ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (24)
  • Wiley  (18)
  • AGU (American Geophysical Union)  (15)
  • Springer Nature
  • 1
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 8 (Q1000005).
    Publikationsdatum: 2018-03-01
    Beschreibung: Multichannel seismic reflection images across the transition between the east Alborán and the Algero-Balearic basins show how crustal thickness decreases from about 5 s two-way traveltime (TWTT, ∼15 km thick) in the west (east Alborán basin) to ∼2 s TWTT typical of oceanic crust (∼6 km thick) in the east (Algero-Balearic basin). We have differentiated three different crustal domains in this transition, mainly on the basis of crustal thickness and seismic signature. Boundaries between the three crustal domains are transitional and lack evidence for major faults. Tilted blocks related to extension are very scarce and all sampled basement outcrops are volcanic, suggesting a strong relationship between magmatism and crustal structure. Stratigraphic correlation of lithoseismic units with sedimentary units of southeastern Betic basins indicates that sediments onlap igneous basement approximately at 12 Ma in the eastern area and at 8 Ma in the western area. Linking seismic crustal structure with magmatic geochemical evidence suggests that the three differentiated crustal domains may represent, from west to east, thin continental crust modified by arc magmatism, magmatic-arc crust, and oceanic crust. Middle to late Miocene arc and oceanic crust formation in the east Alborán and Algero-Balearic basins, respectively, occurred during westward migration of the Gibraltar accretionary wedge and shortening in the Betic-Rif foreland basins. Arc magmatism and associated backarc oceanic crust formation were related to early to middle Miocene subduction and rollback of the Flysch Trough oceanic basement. Subduction of this narrow slab beneath the Alborán basin was coeval with collision of the Alborán domain with the Iberian and African passive margins and subsequent subcontinental-lithosphere edge delamination along the Betic-Rif margins.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-02-08
    Beschreibung: High-resolution acoustic and seismic data acquired 100 km offshore Cape São Vicente, image with unprecedented detail one of the largest active reverse faults of the SW Iberian Margin, the Horseshoe Fault (HF). The HF region is an area seismogenically active, source of the largest magnitude instrumental and historical earthquake (Mw〉6) occurred in the SW Iberian Margin. The HF corresponds to a N40 trending, 110 km long, and NW-verging active thrust that affects the whole sedimentary sequence and reaches up to the seafloor, generating a relief of more than 1 km. The along-strike structural variability as well as fault trend suggests that the HF is composed by three main sub-segments: North (N25), Central (N50) and South (N45). Swath-bathymetry, TOBI sidescan sonar backscatter and parametric echosounder TOPAS profiles reveal the surface morphology of the HF block, characterized by several, steep (20º) small scarps located on the hangingwall, and a succession of mass transport deposits (i.e. turbidites) on its footwall, located in the Horseshoe Abyssal Plain. A succession of pre-stack depth-migrated multichannel seismic reflection profiles across the HF and neighboring areas allowed us to constrain their seismo-stratigraphy, structural geometry, tectono-sedimentary evolution from Upper Jurassic to present-day, and to calculate their fault parameters. Finally, on the basis of segment length, surface fault area and seismogenic depth we evaluated the seismic potential of the HF, which in the worst-case scenario may generate an earthquake of magnitude Mw 7.8 ± 0.1. Thus, considering the tectonic behavior and near-shore location, the HF should be recognized in seismic and tsunami hazard assessment models of Western Europe and North Africa.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-02-27
    Beschreibung: IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor-sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of pre-existing low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or micro-faulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor-sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits comprised of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution dataset to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes. This article is protected by copyright. All rights reserved.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Paleoceanography, 15 (1). pp. 95-109.
    Publikationsdatum: 2017-01-18
    Beschreibung: The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°–2°C), moderate cooling in the subtropical midlatitudes (2°–6°C), and maximum cooling to the southeast of New Zealand (6°–10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2018-03-09
    Beschreibung: An interlaboratory study of Mg/Ca and Sr/Ca ratios in three commercially available carbonate reference materials (BAM RS3, CMSI 1767, and ECRM 752-1) was performed with the participation of 25 laboratories that determine foraminiferal Mg/Ca ratios worldwide. These reference materials containing Mg/Ca in the range of foraminiferal calcite (0.8 mmol/mol to 6 mmol/mol) were circulated with a dissolution protocol for analysis. Participants were asked to make replicate dissolutions of the powdered samples and to analyze them using the instruments and calibration standards routinely used in their laboratories. Statistical analysis was performed in accordance with the International Standardization Organization standard 5725, which is based on the analysis of variance (ANOVA) technique. Repeatability (RSDr%), an indicator of intralaboratory precision, for Mg/Ca determinations in solutions after centrifuging increased with decreasing Mg/Ca, ranging from 0.78% at Mg/Ca = 5.56 mmol/mol to 1.15% at Mg/Ca = 0.79 mmol/mol. Reproducibility (RSDR%), an indicator of the interlaboratory method precision, for Mg/Ca determinations in centrifuged solutions was noticeably worse than repeatability, ranging from 4.5% at Mg/Ca = 5.56 mmol/mol to 8.7% at Mg/Ca = 0.79 mmol/mol. Results of this study show that interlaboratory variability is dominated by inconsistencies among instrument calibrations and highlight the need to improve interlaboratory compatibility. Additionally, the study confirmed the suitability of these solid standards as reference materials for foraminiferal Mg/Ca (and Sr/Ca) determinations, provided that appropriate procedures are adopted to minimize and to monitor possible contamination from silicate mineral phases.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-09-23
    Beschreibung: Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A 〉100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2018-02-28
    Beschreibung: Recently acquired high-resolution multichannel seismic profiles together with bathymetric and sub-bottom profiler data from the external part of the Gulf of Cadiz (Iberia-Africa plate boundary) reveal active deformation involving old (Mesozoic) oceanic lithosphere. This area is located 180 km offshore the SW Iberian Peninsula and embraces the prominent NE-SW trending Coral Patch Ridge, and part of the surrounding deep Horseshoe and Seine abyssal plains. E-W trending dextral strike-slip faults showing surface deformation of flower-like structures predominate in the Horseshoe Abyssal Plain, whereas NE-SW trending compressive structures prevail in the Coral Patch Ridge and Seine Hills. Although the Coral Patch Ridge region is characterized by subdued seismic activity, the area is not free from seismic hazard. Most of the newly mapped faults correspond to active blind thrusts and strike-slip faults that are able to generate large magnitude earthquakes (Mw 7.2-8.4). This may represent a significant earthquake and tsunami hazard that has been overlooked so far.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research - Oceans, 119 (2). pp. 704-730.
    Publikationsdatum: 2014-09-01
    Beschreibung: The potential for a dynamical impact of Saharan mineral dust on the North Atlantic Ocean large-scale circulation is investigated. To this end, an ocean general circulation model forced by atmospheric fluxes is perturbed by an idealized, seasonally varying, net shortwave flux anomaly, as it results from remote sensing observations of aerosol optical thickness representing Saharan dust load in the atmosphere. The dust dynamical impact on the circulation is assessed through a comparison between perturbed and an unperturbed run. Results suggest that, following the dust-induced shortwave irradiance anomaly, a buoyancy anomaly is created in the Atlantic offshore the African coast, which over the course of the time propagates westward into the interior Atlantic while progressively subducting. Changes in the large-scale barotropic and overturning circulations are significant after 3 years, which coincides with the elapsed time required by the bulk of the buoyancy perturbation to reach the western boundary of the North Atlantic. Although small in amplitude, the changes in the meridional overturning are of the same order as interannual-to-decadal variability. Variations in the amplitude of the forcing lead to changes in the amplitude of the response, which is almost linear during the first 3 years. In addition, a fast, but dynamically insignificant, response can be observed to propagate poleward along the eastern boundary of the North Atlantic, which contributes to a nonlinear response in the subpolar region north of 40°N.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2015-07-24
    Beschreibung: We present a new classification of geological domains at the Africa-Eurasia plate boundary off SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along a new transect running from the Horseshoe to the Seine abyssal plains, which is combined with previously available geophysical models from the region. The basement velocity structure at the Seine Abyssal Plain indicates the presence of a highly heterogeneous, thin oceanic crust with local high-velocity anomalies possibly representing zones related to the presence of ultramafic rocks. The integration of this model with previous ones reveals the presence of three oceanic domains offshore SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental breakup (Late Jurassic); and (3) the Gorringe Bank domain, made of exhumed mantle rocks, which formed during the first stages of North Atlantic opening. Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (1). pp. 171-184.
    Publikationsdatum: 2020-02-06
    Beschreibung: The tropical Atlantic exerts a major influence in climate variability through strong air-sea interactions. Within this region, the eastern side of the equatorial band is characterized by strong seasonality, whereby the most prominent feature is the annual development of the Atlantic Cold Tongue (ACT). This band of low sea surface temperatures (∼22-23°C) is typically associated with upwelling-driven enhancement of surface nutrient concentrations and primary production. Based on a detailed investigation of the distribution and sea-to-air fluxes of N2O in the eastern equatorial Atlantic (EEA), we show that the onset and seasonal development of the ACT can be clearly observed in surface N2O concentrations, which increase progressively as the cooling in the equatorial region proceeds during spring-summer. We observed a strong influence of the surface currents of the EEA on the N2O distribution, which allowed identifying “high” and “low” concentration regimes that were, in turn, spatially delimited by the extent of the warm eastward-flowing North Equatorial Countercurrent and the cold westward-flowing South Equatorial Current. Estimated sea-to-air fluxes of N2O from the ACT (mean 5.18±2.59 µmol m−2 d−1) suggests that in May-July 2011 this cold-water band doubled the N2O efflux to the atmosphere with respect to the adjacent regions, highlighting its relevance for marine tropical emissions of N2O. This article is protected by copyright. All rights reserved.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...