ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (55)
  • AGU (American Geophysical Union)  (33)
  • AMS (American Meteorological Society)  (22)
  • 1
    Publication Date: 2021-04-23
    Description: Our study followed the seasonal cycling of soluble (SFe), colloidal (CFe), dissolved (DFe), total dissolvable (TDFe), labile particulate (LPFe) and total particulate (TPFe) iron in the Celtic Sea (NE Atlantic Ocean). Preferential uptake of SFe occurred during the spring bloom, preceding the removal of CFe. Uptake and export of Fe during the spring bloom, coupled with a reduction in vertical exchange, led to Fe deplete surface waters (〈0.2 nM DFe; 0.11 nM LPFe, 0.45 nM TDFe, 1.84 nM TPFe) during summer stratification. Below the seasonal thermocline, DFe concentrations increased from spring to autumn, mirroring NO3- and consistent with supply from remineralised sinking organic material, and cycled independently of particulate Fe over seasonal timescales. These results demonstrate that summer Fe availability is comparable to the seasonally Fe limited Ross Sea shelf, and therefore is likely low enough to affect phytoplankton growth and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 100 (B6). pp. 9761-9788.
    Publication Date: 2017-11-27
    Description: Seismic techniques provide the highest-resolution measurements of the structure of the crust and have been conducted on a worldwide basis. We summarize the structure of the continental crust based on the results of seismic refraction profiles and infer crustal composition as a function of depth by comparing these results with high-pressure laboratory measurements of seismic velocity for a wide range of rocks that are commonly found in the crust. The thickness and velocity structure of the crust are well correlated with tectonic province, with extended crust showing an average thickness of 30.5 km and orogens an average of 46.3 km. Shields and platforms have an average crustal thickness nearly equal to the global average. We have corrected for the nonuniform geographical distribution of seismic refraction profiles by estimating the global area of each major crustal type. The weighted average crustal thickness based on these values is 41.1 km. This value is 10% to 20% greater than previous estimates which underrepresented shields, platforms, and orogens. The average compressional wave velocity of the crust is 6.45 km/s, and the average velocity of the uppermost mantle (Pn velocity) is 8.09 km/s. We summarize the velocity structure of the crust at 5-km depth intervals, both in the form of histograms and as an average velocity-depth curve, and compare these determinations with new measurements of compressional wave velocities and densities of over 3000 igneous and metamorphic rock cores made to confining pressures of 1 GPa. On the basis of petrographic studies and chemical analyses, the rocks have been classified into 29 groups. Average velocities, densities, and standard deviations are presented for each group at 5-km depth intervals to crustal depths of 50 km along three different geotherms. This allows us to develop a model for the composition of the continental crust. Velocities in the upper continental crust are matched by velocities of a large number of lithologies, including many low-grade metamorphic rocks and relatively silicic gneisses of amphibolite facies grade. In midcrustal regions, velocity gradients appear to originate from an increase in metamorphic grade, as well as a decrease in silica content. Tonalitic gneiss, granitic gneiss, and amphibolite are abundant midcrustal lithologies. Anisotropy due to preferred mineral orientation is likely to be significant in upper and midcrustal regions. The bulk of the lower continental crust is chemically equivalent to gabbro, with velocities in agreement with laboratory measurements of mafic granulite. Garnet becomes increasingly abundant with depth, and mafic garnet granulite is the dominant rock type immediately above the Mohorovicic discontinuity. Average compressional wave velocities of common crustal rock types show excellent correlations with density. The mean crustal density calculated from our model is 2830 kg/m3, and the average SiO2 content is 61.8%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 94 (B11). pp. 16023-16035.
    Publication Date: 2018-03-06
    Description: A seismic refraction profile recorded along the geologic strike of the Chugach Mountains in southern Alaska shows three upper crustal high-velocity layers (6.9, 7.2, and 7.6 km/s) and a unique pattern of strongly focussed echelon arrivals to a distance of 225 km. The group velocity of the ensemble of echelon arrivals is 6.4 km/s. Modeling of this profile with the reflectivity method reveals that the echelon pattern is due to peg-leg multiples generated from with a low-velocity zone between the second and third upper crustal high-velocity layers. The third high-velocity layer (7.6 km/s) is underlain at 18 km depth by a pronounced low-velocity zone that produces a seismic shadow wherein zone peg-leg multiples are seen as echelon arrivals. The interpretation of these echelon arrivals as multiples supersedes an earlier interpretation which attributed them to successive primary reflections arising from alternating high- and low-velocity layers. Synthetic seismogram modeling indicates that a low-velocity zone with transitional upper and lower boundaries generates peg-leg multiples as effectively as one with sharp boundaries. No PmP or Pn arrivals from the subducting oceanic Moho at 30 km depth beneath the western part of the line are observed on the long-offset (90-225 km) data. This may be due to a lower crustal waveguide whose top is the high-velocity (7.6 km/s) layer and whose base is the Moho. A deep (~54 km) reflector is not affected by the waveguide and has been identified in the data. Although peg-leg multiples have been interpreted on some long-range refraction profiles that sound to upper mantle depths, the Chugach Mountains profile is one of the few crustal refraction profiles where peg-leg multiples are clearly observed. This study indicates that multiple and converted phases may be more important in seismic refraction/wide-angle reflection profiles than previously recognized.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 36 (1). pp. 43-63.
    Publication Date: 2017-11-15
    Description: The circulation of the northeastern Atlantic Ocean at intermediate depths is characterized by watermass transformation processes that involve Iceland–Scotland Overflow Water (ISOW) from the northeast, Labrador Sea Water (LSW) from the west, and Mediterranean Water from the south. Field observations were carried out with 89 eddy-resolving floats (RAFOS and MARVOR types). The data coverage achieved is remarkably high and enables a comprehensive study of the eastern basins between Iceland and the Azores. The trajectories show typical pathways of the water masses involved and the role that the complex bottom topography plays in defining them. The ISOW paths tend to lean against the slopes of the Reykjanes Ridge and Rockall Plateau. Westward escapes through multiple gaps in the ridge are possible, superimposed on a sustained southward flow in the eastern basin along the Mid-Atlantic Ridge. LSW pathways leading to the eastern basins are subject to high variability in flow direction and eddy activity. In addition to a selection of characteristic trajectories, maps of the horizontal distributions of Lagrangian eddy kinetic energy and integral time scales are presented. These reveal distinct areas of intensified mixing in the Iceland Basin, as well as the sharp contrast between the subpolar and subtropical dynamics. A self-contained eddy detection scheme is applied to obtain statistics on individual eddy properties and their abundance. It is suggested that much of the intensified mixing can be related to cyclonic activity, particularly in the subpolar region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 12 (4). pp. 923-934.
    Publication Date: 2020-08-04
    Description: A method to derive salinity data from RAFOS float temperature and pressure measurements is described. It is based on evaluating the float's in situ density from its mechanical properties and in situ pressure and temperature data. The salinity of the surrounding water may then be determined, assuming that the float has reached equilibrium with its environment. This method, in comparison with the possible use of floatborne salinity cells, has the advantage of being both cost and energy neutral and highly stable in the long term. The effect on the estimated salinity of various parameters used in the determination of the float's in situ density is discussed. Results of seven RAFOS Boats deployed in the Brazil Basin are compared with corresponding CTD data to estimate the magnitude of these errors. At present, an accuracy of 0.3 psu is achieved. The accuracy may be improved to 0.02 psu by referring the float's calculated density to a reference density established by a CTD cast at the time of launch. Results from five floats deployed in the heterogeneous water masses of the Iberian Basin are compared with the corresponding CM casts to demonstrate the variability and interpretation of p-T-S float datasets from different areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 3 (1). pp. 75-83.
    Publication Date: 2016-05-10
    Description: An XBT interface is described for use with Commodore and other 6502 based microprocessors. This interface takes the form of a single circuit board mounted inside the microcomputer and is completely software controlled. The application of this digital XBT system to the real-time computation of density and dynamic height, using historical or recent temperature-salinity relationships, is also described. Comparison between XBT and CTD measured temperatures from the Northeast Atlantic yield a mean temperature difference of −0.08°C and an rms temperature difference of 0.33°C for the upper 800 m. Examples of dynamic topography maps and a temperature section computed using this technique are also presented and comparison between objectively analyzed XBT and CTD dynamic topographies demonstrates the reliability of the method for mapping the baroclinic flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 (10). pp. 2129-2141.
    Publication Date: 2018-04-05
    Description: In this study a scenario is developed of two adjacent Mediterranean Water eddies (meddies) as they were observed merging and drifting through the Iberian Basin. Observations are based on four RAFOS floats (at 850–1050 dbar), two hydrographic surveys (centered roughly at 38°N, 24°W), and trajectories of surface drifters (drogued at 100 m). In April 1991, the meddy A was identified and labeled by surface drifters. During the revisit one month later two meddies were encountered, B1 and B2, in the vicinity of the former meddy A. The coalescence of B1 (subsequently identified as A, one month older) and B2 is inferred from a simple kinematic model describing the observed movement of the RAFOS floats for up to three months after the second CTD survey. The deduced vorticity front, radius ∼15 km, within B1 was of insufficient strength to keep the core waters of B1 isolated and prevent the absorption of B1 by B2. The resulting meddy (B1 + B2) showed a clear near-surface dynamical signal. Its deep root (1800 m) could explain the expulsion from the meddy of the remaining RAFOS float and surface drifter at the time of the meddy's collision with the Josephine Seamount. For the first time, a set of Lagrangian and hydrographic observations give direct evidence that neighboring meddies can merge as predicted by theoretical considerations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 (12). pp. 2667-2682.
    Publication Date: 2018-04-05
    Description: The total transport of Antarctic Bottom Water across the Rio Grande Rise, including the western boundary, the Vema Channel, and the Hunter Channel is estimated from hydrographic measurements across these pathways. The contribution of the Vema Channel is greatest at 3.9 × 106 m3 s−1, which is very close to earlier estimates. The western boundary current contribution is 2.0 × 106 m3 s−1 and that of the Hunter Channel 0.7 × 106 m3 s−1. The lower values outside the Vema Channel are offset by the important source of mass they form to the lower density classes of bottom water. About 40% of the flow is concentrated in the highest density class representing the source of Weddell Sea Deep Water to the Brazil Basin. The flow structure is characterized by horizontal and vertical recirculation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C5). p. 8405.
    Publication Date: 2019-09-23
    Description: Hydrographic observations from the Iberian Basin demonstrate the variability of water masses in upper and intermediate layers. The surveyed area embraces the internal front between water masses from higher latitudes and the Mediterranean outflow, exhibits several isolated Mediterranean eddy (meddy) structures at middepth, and displays the virtual source region for the Mediterranean Water (MW) tongue off the Portuguese continental slope. The description is enhanced by additional chlorofluoromethane measurements, which show anomalously high concentrations at middepth, due to mixing of MW with the overlying Atlantic waters in the Gulf of Cadiz. The geostrophic stream function shows several meddylike features that not only are remarkably extended in the depth range of the MW, but are also correlated with surface height anomalies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 17 (1). pp. 158-163.
    Publication Date: 2020-08-04
    Description: The existence of energetic anticyclonic mid-depth vortices of Mediterranean Water (meddies) questions the validity of a conventional advective–diffusive balance in the eastern Atlantic subtropical gyre. A mesoscale experiment in the Azores–Madeira region reveals a link of these meddies to large-scale subsurface meanders. For the first time it is shown that meddies may have strong surface vorticity, indicative of a generation process involving the Azores Current—a deep reaching near-surface jet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...