ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-29
    Description: Partitioning uncertainty in projections of future climate change into contributions from internal variability, model response uncertainty and emissions scenarios has historically relied on making assumptions about forced changes in the mean and variability. With the advent of multiple single-model initial-condition large ensembles (SMILEs), these assumptions can be scrutinized, as they allow a more robust separation between sources of uncertainty. Here, the framework from Hawkins and Sutton (2009) for uncertainty partitioning is revisited for temperature and precipitation projections using seven SMILEs and the Coupled Model Intercomparison Project CMIP5 and CMIP6 archives. The original approach is shown to work well at global scales (potential method bias 
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-27
    Description: Simulations with the Max Planck Institute Earth System Model (MPI-ESM) are used to study the sensitivity of the AMOC and the deep ocean water masses during the Last Glacial Maximum to different sets of forcings. Analysing the individual contributions of the glacial forcings reveals that the ice sheets cause an increase of the overturning strength and a deepening of the North Atlantic Deep Water (NADW) cell, while the low greenhouse gas (GHG) concentrations cause the overturning strength to decrease and the NADW cell to shoal. The effect of the orbital configuration is negligible. The effects of the ice sheets and the GHG reduction balance each other in the deep ocean so that no shoaling of the NADW cell is simulated in the full glacial state. Experiments in which different GHG concentrations with linearly decreasing radiative forcing are applied to a setup with glacial ice sheets and orbital configuration show that GHG concentrations below the glacial level are necessary to cause a shoaling of the NADW cell with respect to the preindustrial state in MPI-ESM. For a pCO2 of 149 ppm, the simulated overturning state and the deep ocean water masses are in best agreement with the glacial state inferred from proxy data. Sensitivity studies confirm that brine release and shelf convection in the Southern Ocean are key processes for the shoaling of the NADW cell. Shoaling occurs only when Southern Ocean shelf water contributes significantly to the formation of Antarctic Bottom Water.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-08
    Description: Simulations with the Max Planck Institute Earth System Model (MPI-ESM) are used to study the sensitivity of the AMOC and the deep-ocean water masses during the Last Glacial Maximum to different sets of forcings. Analysing the individual contributions of the glacial forcings reveals that the ice sheets cause an increase in the overturning strength and a deepening of the North Atlantic Deep Water (NADW) cell, while the low greenhouse gas (GHG) concentrations cause a decrease in overturning strength and a shoaling of the NADW cell. The effect of the orbital configuration is negligible. The effects of the ice sheets and the GHG reduction balance each other in the deep ocean so that no shoaling of the NADW cell is simulated in the full glacial state. Experiments in which different GHG concentrations with linearly decreasing radiative forcing are applied to a setup with glacial ice sheets and orbital configuration show that GHG concentrations below the glacial level are necessary to cause a shoaling of the NADW cell with respect to the pre-industrial state in MPI-ESM. For a pCO2 of 149 ppm, the simulated overturning state and the deep-ocean water masses are in best agreement with the glacial state inferred from proxy data. Sensitivity studies confirm that brine release and shelf convection in the Southern Ocean are key processes for the shoaling of the NADW cell. Shoaling occurs only when Southern Ocean shelf water contributes significantly to the formation of Antarctic Bottom Water.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-03
    Description: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...