ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-09-24
    Beschreibung: This paper examines a hydrographic response to the wind‐driven coastal polynya activity over the southeastern Laptev Sea shelf for April–May 2008, using a combination of Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) and TerraSAR‐X satellite imagery, aerial photography, meteorological data, and SBE‐37 salinity‐temperature‐depth and acoustic Doppler current profiler land‐fast ice edgemoored instruments. When ASAR observed the strongest end‐of‐April polynya event with frazil ice formation, the moored instruments showed maximal acoustical scattering within the surface mixed layer, and the seawater temperatures were either at or 0.02°C below freezing. We also find evidence of the persistent orizontal temperature and salinity gradients across the fast ice edge to have the signature of geostrophic flow adjustment as predicted by polynya models.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-02-18
    Beschreibung: A simple polynya flux model driven by standard atmospheric forcing is used to investigate the ice formation that took place during an exceptionally strong and consistent western New Siberian (WNS) polynya event in 2004 in the Laptev Sea. Whether formation rates are high enough to erode the stratification of the water column beneath is examined by adding the brine released during the 2004 polynya event to the average winter density stratification of the water body, preconditioned by summers with a cyclonic atmospheric forcing (comparatively weakly stratified water column). Beforehand, the model performance is tested through a simulation of a well-documented event in April 2008. Neglecting the replenishment of water masses by advection into the polynya area, we find the probability for the occurrence of density-driven convection down to the bottom to be low. Our findings can be explained by the distinct vertical density gradient that characterizes the area of the WNS polynya and the apparent lack of extreme events in the eastern Laptev Sea. The simple approach is expected to be sufficiently rigorous, since the simulated event is exceptionally strong and consistent, the ice production and salt rejection rates are likely to be overestimated, and the amount of salt rejected is distrusted over a comparatively weakly stratified water column. We conclude that the observed erosion of the halocline and formation of vertically mixed water layers during a WNS polynya event is therefore predominantly related to wind- and tidally driven turbulent mixing processes.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-01-31
    Beschreibung: This paper examines the role of the Arctic Ocean Atlantic water (AW) in modifying the Laptev Sea shelf bottom hydrography on the basis of historical records from 1932 to 2008, field observations carried out in April–May 2008, and 2002–2009 cross‐slope measurements. A climatology of bottom hydrography demonstrates warming that extends offshore from the 30–50 m depth contour. Bottom layer temperature‐time series constructed from historical records links the Laptev Sea outer shelf to the AW boundary current transporting warm and saline water from the North Atlantic. The AW warming of the mid‐1990s and the mid‐2000s is consistent with outer shelf bottom temperature variability. For April–May 2008 we observed on‐shelf near‐bottom warm and saline water intrusions up to the 20 m isobath. These intrusions are typically about 0.2°C warmer and 1–1.5 practical salinity units saltier than ambient water. The 2002–2009 cross‐slope observations are suggestive for the continental slope upward heat flux from the AW to the overlying low‐halocline water (LHW). The lateral on‐shelf wind‐driven transport of the LHW then results in the bottom layer thermohaline anomalies recorded over the Laptev Sea shelf. We also found that polynya‐induced vertical mixing may act as a drainage of the bottom layer, permitting a relatively small portion of the AW heat to be directly released to the atmosphere. Finally, we see no significant warming (up until now) over the Laptev Sea shelf deeper than 10–15 m in the historical record. Future climate change, however, may bring more intrusions of Atlantic‐modified waters with potentially warmer temperature onto the shelf, which could have a critical impact on the stability of offshore submarine permafrost.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    CAMBRIDGE UNIV PRESS
    In:  EPIC3Antarctic Science, CAMBRIDGE UNIV PRESS, 26(3), pp. 309-326, ISSN: 0954-1020
    Publikationsdatum: 2016-11-29
    Beschreibung: Mesoscale model simulations were conducted for the Weddell Sea region for the autumn and winter periods of 2008 using a high-resolution, limited-area, non-hydrostatic atmospheric model. A sea ice–ocean model was run with enhanced horizontal resolution and high-resolution forcing data of the atmospheric model. Daily passive thermal and microwave satellite data was used to derive the polynya area in the Weddell Sea region. The focus of the study is on the formation of polynyas in the coastal region of Coats Land, which is strongly affected by katabatic flows. The polynya areas deduced from two independent remote sensing methods and data sources show good agreement, while the results of the sea ice simulation show some weaknesses. Linkages between the pressure gradient force composed of a katabatic and a synoptic component, offshore wind regimes and polynya area are identified. It is shown that the downslope surface offshore wind component of Coats Land is the main forcing factor for polynya dynamics, which is mainly steered by the offshore pressure gradient force, where the katabatic force is the dominant term. We find that the synoptic pressure gradient is opposed to the katabatic force during major katabatic wind events.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...