ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (17)
  • Macmillan Magazines Ltd.  (1)
  • AGU (American Geological Union)
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 407 (2000), S. 30-31 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the North Atlantic Ocean, circulation at depths between 500 and 2,000 metres is fed mainly by water from the Labrador Sea (Fig. 1 ). Here, in winter, surface water cools, becomes denser, sinks to deeper layers, and either circulates within the Labrador basin or passes into the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The North Atlantic Current (NAC) is subject to variability on multiannual to decadal time scales, influencing the transport of volume, heat, and freshwater from the subtropical to the eastern subpolar North Atlantic (NA). Current observational time series are either too short or too episodic to study the processes involved. Here we compare the observed continuous NAC transport time series at the western flank of the Mid-Atlantic Ridge (MAR) and repeat hydrographic measurements at the OVIDE line in the eastern Atlantic with the NAC transport and circulation in the high-resolution (1/20°) ocean model configuration VIKING20 (1960–2008). The modeled baroclinic NAC transport relative to 3400 m (24.5 ± 7.1 Sv) at the MAR is only slightly lower than the observed baroclinic mean of 27.4 ± 4.7 Sv from 1993 to 2008, and extends further north by about 0.5°. In the eastern Atlantic, the western NAC (WNAC) carries the bulk of the transport in the model, while transport estimates based on hydrographic measurements from five repeated sections point to a preference for the eastern NAC (ENAC). The model is able to simulate the main features of the subpolar NA, providing confidence to use the model output to analyze the influence of the North Atlantic Oscillation (NAO). Model based velocity composites reveal an enhanced NAC transport across the MAR of up to 6.7 Sv during positive NAO phases. Most of that signal (5.4 Sv) is added to the ENAC transport, while the transport of the WNAC was independent of the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C5). p. 8405.
    Publication Date: 2019-09-23
    Description: Hydrographic observations from the Iberian Basin demonstrate the variability of water masses in upper and intermediate layers. The surveyed area embraces the internal front between water masses from higher latitudes and the Mediterranean outflow, exhibits several isolated Mediterranean eddy (meddy) structures at middepth, and displays the virtual source region for the Mediterranean Water (MW) tongue off the Portuguese continental slope. The description is enhanced by additional chlorofluoromethane measurements, which show anomalously high concentrations at middepth, due to mixing of MW with the overlying Atlantic waters in the Gulf of Cadiz. The geostrophic stream function shows several meddylike features that not only are remarkably extended in the depth range of the MW, but are also correlated with surface height anomalies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 100 (C2). p. 2441.
    Publication Date: 2018-04-17
    Description: The distributions and transports of deepwater masses at the western boundary in the tropical Atlantic off Brazil have been studied on three surveys along 35 degrees W and 5 degrees S and one at 10 degrees S. Transports are obtained from direct measurements of the velocity fields (Pegasus profiling system and lowered acoustic Doppler current profiler) and from geostrophic computations. Using chlorofluoromethane (CFM) and hydrographic distributions, four water masses could be identified forming the North Atlantic Deep Water (NADW) system. Two of these have a high CFM content, the ''shallow upper NADW'' (SUNADW) and the ''overflow lower NADW'' (OLNADW). These exhibit the highest velocity signals at 35 degrees W, where distinct flow cores seem to exist; most of the southeastward flow of the SUNADW (centered around 1600 m) occurs 320 km offshore between 3 degrees 09'S and 1 degrees 50'S (9.7 +/- 3.3 Sv); farther north in that section, a highly variable reversing flow is found in a second velocity maximum. The transport of OLNADW (centered around 3800 m) of 4.6 +/- 2.6 Sv is guided by the Parnaiba Ridge at 1 degrees 45'S, 35 degrees W. The water masses located between the two CFM maxima, the Labrador Sea Water (LSW) and the LNADW old water mass (LNADW-old), did not show any persistent flow features, however, a rather constant transport of 11.1 +/- 2.6 Sv was observed for these two layers. The total southeastward flow of the NADW at 35 degrees W showed a transport of 26.8 +/- 7.0 Sv, if one neglects the reversing SUNADW north of 1 degrees 50'S. At 5 degrees S the flow of all deepwater masses shows vertically aligned cores; the main southward transport occurred near the coast (19.5 +/- 5.3 Sv). The boundary current is limited offshore by a flow reversal, present in all three surveys, but located at different longitudes. At 10 degrees S a southward transport of 4.7 Sv was observed in November 1992. However, the section extended only to 32 degrees 30'W, so that probably a significant part of the flow has been missed. An important result is the large transport variability between single cruises as well as variability of the spatial distribution of the flow at 35 degrees W, which could lead to large uncertainties in the interpretation of single cruise observations. Despite these uncertainties we suggest a circulation pattern of the various deepwater masses near the equator by combining our mean transport estimates with other observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research, 103 . pp. 15869-15883.
    Publication Date: 2017-11-24
    Description: Four World Ocean Circulation Experiment (WOCE) repeat cruises (October 1990 to March 1994) in the tropical Atlantic off Brazil are used to study the spatial and temporal evolution of the chlorofluorocarbon (CFC) (components CFC-11 and CFC-12) and tritium signal in the upper North Atlantic Deep Water (NADW). Its shallowest part, located in the tropical Atlantic around 1600-m depth, is the shallow upper North Atlantic Deep Water (SUNADW). It is characterized by a distinct tracer maximum, which is presumably received through winter time convection in the subpolar North Atlantic. Here we discuss the tracer fields and the temporal evolution of the tracer signal of the SUNADW in the tropical Atlantic along two meridional sections at 44 degrees and 35 degrees W and two zonal sections at 5 degrees and 10 degrees S off Brazil. The spatial and temporal development of the tracer field in the tropical Atlantic as well as the correlation with hydrographic parameters show that the temporal tracer change being due to the arrival of "younger" water is disturbed by other processes. In particular, the impact of variable mixing and spreading pathways on the observed tracer variability in the SUNADW is evident in the observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C10). C10004.
    Publication Date: 2019-09-23
    Description: Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the inline equation Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent pathway was found east of Barbados, where a ring could avoid the interaction with the islands and migrate toward the northern Lesser Antilles undisturbed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 104 (C10). 23,495-23,508.
    Publication Date: 2018-04-17
    Description: Owing to its nearly enclosed nature, the Tyrrhenian Sea at first sight is expected to have a small impact on the distribution and characteristics of water masses in the other basins of the western Mediterranean, The first evidence that the Tyrrhenian Sea might, in fact, play an important role in the deep and intermediate water circulation of the entire western Mediterranean was put forward by Hopkins [1988]. There, an outflow of water from the Tyrrhenian Sea into the Algero Provencal Basin was postulated in the depth range 700-1000 m, to compensate for an observed inflow of deeper water into the Tyrrhenian Sea. However, this outflow, the Tyrrhenian Deep Water (TDW), was undetectable since it would have hydrographic characteristics that could also be produced within the Algero-Provencal Basin. A new data set of hydrographic, tracer, lowered Acoustic Doppler Current Profiler (LADCP), and deep float observations presented here allows us now to identify and track the TDW in the Algero-Provencal Basin and to demonstrate the presence and huge extent of this water mass throughout the western Mediterranean. It extends from 600 m to 1600-1900 m depth and thus occupies much of the deep water regime. The outflow from the Tyrrhenian is estimated to be of the order of 0.4 Sv (Sv=10(6) m(3) s(-1)), based on the tracer balances. This transport has the same order of magnitude as the deep water formation rate in the Gulf of Lions. The Tyrrhenian Sea effectively removes convectively generated deep water (Western Mediterranean Deep Water (WMDW)) from the Algero-Provencal Basin, mixes it with Levantine Intermediate water (LIW) above, and reinjects the product into the Algero-Provencal Basin at a level between the WMDW and LIW, thus smoothing the temperature and salinity gradients between these water masses. The tracer characteristics of the TDW and the lowered ADCP and deep float observations document the expected but weak cyclonic circulation and larger flows in a vigorous eddy regime in the basin interior
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 114 . C05019.
    Publication Date: 2018-04-25
    Description: The upper branch of the meridional overturning circulation in the North Atlantic is fed by cross‐equatorial transport of various water masses from the Southern Hemisphere. Here, we study the large‐scale spreading of South Atlantic Water (SAW) into the western tropical North Atlantic from the equator to 25°N. The fractions of SAW in the upper ocean water masses are quantified using a water mass analysis applied on a data set of conductivity‐temperature‐depth data from the Hydrobase project and the Argo float program. To fill gaps in the data coverage and to gain insight into the mechanisms involved, the observations are complemented with results from the high‐resolution Family of Linked Atlantic Model Experiments model (equation image°), which has been shown to realistically simulate the inflow of SAW into the Caribbean. The analysis reveals the mean SAW propagation pathways in the North Atlantic and identifies the regions of largest variability. High SAW fractions in the thermocline and central water layers are limited to the region south of 10°N, where the water body consists of 80%–90% SAW. Thus, the zonal currents in the equatorial gyre are mainly formed of SAW. The weaker currents in the intermediate layer combined with a northward excursion of the North Equatorial Current allow the SAW in this layer to intrude farther north compared to the layers above. The transition into North Atlantic Water occurs gradually from 12°N to 20°N in the intermediate layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-25
    Description: Upwelling velocities w in the equatorial band are too small to be directly observed. Here, we apply a recently proposed indirect method, using the observed helium isotope (3He or 4He) disequilibria in the mixed layer. The helium data were sampled from three cruises in the eastern tropical Atlantic in September 2005 and June/July 2006. A one-dimensional two-box model was applied, where the helium air-sea gas exchange is balanced by upwelling from 3He-rich water below the mixed layer and by vertical mixing. The mixing coefficients Kv were estimated from microstructure measurements, and on two of the cruises, Kv exceeded 1 × 10−4 m2/s, making the vertical mixing term of the same order of magnitude as the gas exchange and the upwelling term. In total, helium disequilibrium was observed on 54 stations. Of the calculated upwelling velocities, 48% were smaller than 1.0 × 10−5 m/s, 19% were between 1.0 and 2.0 × 10−5 m/s, 22% were between 2.0 and 4.0 × 10−5 m/s, and on 11% of upwelling velocities exceeded this limit. The highest upwelling velocities were found in late June 2006. Meridional upwelling distribution indicated an equatorial asymmetry with higher vertical velocities between the equator and 1° to 2° south compared to north of the equator, particularly at 10°W. Associated heat flux into the mixed layer could be as high as 138 W/m2, but this depends strongly on the chosen depths where the upwelled water comes from. By combining upwelling velocities with sea surface temperature and productivity distributions, a mean monthly equatorial upwelling rate of 19 Sv was estimated for June 2006 and a biweekly mean of 24 Sv was estimated for September 2005.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 1623-1626.
    Publication Date: 2018-02-14
    Description: The variability of the North Atlantic Deep Water (NADW) was studied by ten hydrographic repeat sections taken along 44 degreesW off Brazil between September 1989 and March 1994. This data set allowed for the first time to describe the seasonal signal in the Deep Western Boundary Current at the equator from hydrographic data. Annual and semiannual layer thickness modulations were observed similar to such signals in transport time series, however with a time lag of 2 months. A comparison of the interannual variability of the Labrador Sea Water component of the NADW at 44 degreesW at the equator with the formation region indicated a time lag of 13 to 17 years. The effective spreading velocities in the Labrador Sea Water are in the range 2 to 5 cms(-1) for the tropical Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...