ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-23
    Description: The subtropical northeast Atlantic has previously been identified as a marine environment with an apparent imbalance between low nitrate supply to the surface and concurrent high export production. To better constrain the sources and fluxes of mixed layer nitrate and to assess the potential role of N2 fixation in providing new nitrogen (N), we investigated the depth distribution of nitrate δ15N and δ18O at six stations across the Azores Front in the NE Atlantic. In addition, we measured the δ15N of dissolved organic N (DON) in surface waters and of sinking particulate N collected in sediment traps at 2000 m depth between 2003 and 2005 at Station KIEL276. The nitrate isotope profiles at the majority of the hydrographic stations displayed a decrease in the δ15N from depth toward low-nitrate surface waters, concomitant with an increase in δ18O. Given that nitrate uptake by phytoplankton leads to a proportional increase in nitrate δ15N and δ18O, the observed surface water nitrate isotope anomalies (Δ(15;18) up to −6‰) indicate that nitrate assimilation is not the sole process controlling the isotopic composition of nitrate in the photic zone and implicate a significant addition of newly fixed N that is remineralized in surface and subsurface waters. Both the concentration of DON and its δ15N in surface water were spatially invariant, showing mean values of 4.7 ± 0.5 μmol L−1 and 2.6 ± 0.4‰ (n = 35), respectively, supporting the conjecture of a mostly recalcitrant DON pool. The weighted biannual mean δ15N of sinking particulate N (1.8 ± 0.8‰, n = 33) was low with respect to thermocline nitrate. The anomalous dual nitrate isotope signatures together with the low δ15N of export production and elevated nitrate-to-phosphate ratios in surface and subsurface waters strongly suggest that N2 fixation represents a substantive source of N in this part of the subtropical northeast Atlantic. Simple isotope mass balance suggests that, locally, N2 fixation supplies between 56 and 259 mmol N m−2 a−1 for phytoplankton growth in the photic zone, accounting for up to ∼40% of the estimated export production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 99 (C2). pp. 3407-3415.
    Publication Date: 2018-04-27
    Description: The effect of dissolution from particulates into the supernatant solution in sediment trap sample cups has been measured for fatty acids. A mooring array with time series sediment traps was deployed in the northeast Atlantic Ocean (59°N, 21°W) for 14 months. Selected representative samples from the trap at 2200 m (poisoned with NaN3) were analyzed for total and free fatty acids in both the solution and particulate phase by means of gas chromatography‐mass spectrometry with an ion trap detector. The flux contribution of the dissolved total fatty acids (∑ DTFA) was found to be between 15 and 75% of the total flux (∑ TTFA, sum of the fluxes of total fatty acids in both particles and supernatants). Dissolved free fatty acids (∑ DFFA) represented 25–88% of the total flux of free fatty acids (∑ TFFA). Absolute concentrations of total and free fatty acids in both compartments are discussed in terms of the processes controlling the distribution between the two phases, for example, readsorption. Sample handling, poisoning, bacterial activity, and swimmers may also affect fatty acid distribution. Flux data (sum of particulate and dissolved fluxes) are presented for individual fatty acids. Also, the degree of dissolution of individual fatty acids is shown for one sample (dissolved fraction ranging between 16 and 98% of total flux).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-15
    Description: Particle flux data from 27 sites in the Atlantic Ocean have been compiled in order to determine regional variations in the strength and efficiency of the biological pump and to quantify carbon fluxes over the ocean basin, thus estimating the potential oceanic sequestration of atmospheric CO2. An algorithm is derived relating annual particulate organic carbon (POC) flux to primary production and depth that yields variations in the export ratio (ER = POC flux/primary production) at 125 m of between 0.08 and 0.38 over the range of production from 50 to 400 g C m−2 yr−1. Significant regional differences in changes of the export ratio with depth are related to the temporal stability of flux. Sites with more pulsed export have higher export ratios at 125 m but show more rapid decreases of POC flux with depth, resulting in little geographic variation in fluxes below ∼3000 m. The opposing effects of organic carbon production and calcification on ΔpCO2 of surface seawater are considered to calculate an “effective carbon flux” at the depth of the euphotic zone and at the base of the winter mixed layer. POC flux at the base of the euphotic zone integrated over the Atlantic Ocean between 65°N and 65°S amounts to 3.14 Gt C yr−1. Of this, 5.7% is remineralized above the winter mixed layer and thus does not contribute to CO2 sequestration on climatically relevant timescales. The effective carbon flux, termed Jeff, amounts to 2.47 Gt C yr−1 and is a measure of the potential sequestration of atmospheric CO2 for the area considered. A shift in the composition of sedimenting particles (seen in a decrease of the opal:carbonate ratio) is seen across the entire North Atlantic, indicating a basin-wide phenomenon that may be related to large-scale changes in climatic forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...