ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3AGU Fall Meeting 2017, New Orleans, 2017-12-11-2017-12-15New Orleans, AGU
    Publication Date: 2018-01-07
    Description: A prominent two-step rise in atmospheric CO2 marked the end of the last glacial. The steps coincided with climatic intervals Heinrich Stadial 1 (HS1) and the Younger Dryas (YD). Records of 231Pa/230Th on sediment cores bathed by NADW, revealed a rapid reduction of the Atlantic Meridional Overturning Circulation (AMOC), during these intervals. It was argued that a weakened AMOC would have significantly reduced the efficiency of the biological pump and thus might have contributed to the rise in atmospheric CO2. Despite playing an important role, this process fails to account for the enigmatic drop in atmospheric Δ14C and δ13C during HS1 that marks the first step of the CO2-rise. Increasing CO2-concentrations with a simultaneous drop in their Δ14C, call for the ventilation of an old and 14C-depleted carbon reservoir. In this respect, several studies point to the presence of very old, 14C-depleted deep-waters in the glacial Southern Ocean, which rejuvenated during the last deglaciation. However, the accumulation of 14C-depleted, carbon-rich waters in the deep Southern Ocean requires circulation patterns that significantly differ from todays. Here we present a combined set of 231Pa/230Th-, Rare Earth Element- and XRF-proxy records to understand the evolution of the South Pacific Overturning Circulation (SPOC) over the last 35,000 years. Our reconstructions are based on a transect of five sediment cores from the Southwest Pacific, covering the AAIW as well as the UCDW and LCDW. Our data show that throughout the last glacial the SPOC was significantly weakened. This reduction favored the observed accumulation of 14C-depleted CO2 in Circumpolar Deep Waters (CDW). Parallel to the HS1 increase of atmospheric CO2, the deep circulation picked up its pace and recovered toward the Holocene. This trend is in remarkable agreement with water mass radiocarbon reconstructions from the very same area, as well as with atmospherical changes in CO2, Δ14C and δ13C. Hence, we are confident that the Southern Ocean – represented here by the South Pacific – played the dominant role in the first rise in atmospheric CO2. In addition the observed deglacial SPOC strengthening may have supported the transport of warm CDW onto the shelf areas since the timing of retreating West Antarctic ice sheets is in good agreement with recent reconstructions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-21
    Description: Southern Ocean westerly wind intensity and position are thought to play a crucial role in controlling glacial/interglacial CO2 changes through their impact on Antarctic upwelling intensity and the delivery of iron-rich dust that stimulates biological production during glacial periods. Sediment-core grain size records can provide key insights into changes in wind strength and source-area characteristics over glacial-interglacial timescales. However, so far, little is known about G/IG grain size changes in Southern Ocean sediments. For this study, we analyzed the grain-size distributions of two subantarctic deep sea sediments cores from the Pacific (PS75/056-1) and Atlantic (ODP Site 1090) sectors of the Southern Ocean. Dust mean grain size shows opposing trends in the two Southern Ocean sectors. Coarser glacial grain sizes are observed in the Pacific sector, while finer glacial grain-sizes are observed in the Atlantic. Our results suggest that changes in the latitudinal position of the SWW had distinct impacts on grain size distribution in the Atlantic and Pacific sectors, also likely associated with shifts in the dust source areas. These findings indicate that more extensive studies of grain-size distribution in the Southern Ocean can provide important insights on the timing and latitudinal extent of the westerly winds changes during ice ages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-13
    Description: Proxy-based reconstructions of past changes in the marine biological carbon pumps are limited, especially in the Southern Ocean. This work provides new insights into the productivity variations in the Pacific sector of the Southern Ocean. We present new data derived from three sediment cores that show glacial/interglacial coccolithophore variability across Marine Isotope Stage 11 (MIS 11). The cores were retrieved during R/V Polarstern cruise PS75 from the Subantarctic Zone and Polar Front Zone at the western flank of the East Pacific Rise and in the vicinity of the Antarctic-Pacific Ridge. Coccolithophore assemblages were overwhelmingly dominated by the species Gephyrocapsa caribbeanica and small Gephyrocapsa. Total numbers of coccoliths, coccolith accumulation rates, coccolith fraction (CF; 〈20 μm fraction) Sr/Ca data, and temperature-corrected CF Sr/Ca records consistently showed an increase in coccolithophore productivity during Termination V (MIS 12-11 boundary), highest productivity throughout MIS 11 (~424–374 kyr), and a decrease during late MIS 11 in all the cores. We end with a discussion of back-calculated coccolith calcification rate in the surface ocean and its potential contribution to changes in the concentration of atmospheric CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...