ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 14 (1993), S. 525-539 
    ISSN: 1572-9567
    Keywords: dynamic measurements ; high temperature ; scanning pyrometry ; temperature profiles ; thermal conductivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A new dynamic technique for the measurement of thermal conductivity is being developed at IMGC. The experiment consists in bringing the specimen to high temperatures with a current pulse and in measuring the temperature profiles during the free cooling period. Different techniques can be used to extract the information on thermal conductivity from the profiles. The numerical computation of thermal conductivity from the experimental temperature profiles in absolute space is possible, but it is difficult and cumbersome because one must know and take into the account the exact position of the infinitesimal elements of the specimen in different profiles. Computations in tube-space (a fictitious space where no thermal expansion occurs) are simpler and lead to less complex numerical computations. Complementary techniques to evaluate thermal conductivity as a function of temperature or at constant temperature are presented with a discussion of advantages and disadvantages of each method. Computer simulations have tested the precision of the complex software. Numerically generated temperature profiles from known thermophysical properties have been obtained and thermal conductivity has been recomputed from the profiles. The relative difference using different computational approaches and different fitting functions is always less than 0.1%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-05-01
    Print ISSN: 0195-928X
    Electronic ISSN: 1572-9567
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-01
    Print ISSN: 0145-479X
    Electronic ISSN: 1573-6881
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-08
    Print ISSN: 0145-479X
    Electronic ISSN: 1573-6881
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-16
    Description: Arctic ponds, i. e. water bodies with a surface area equal to or smaller than 10⁴ m² (1 ha), are currently not inventoried on a circum-arctic scale. However, they are a key element of the water, energy, and carbon balance and abundant in Arctic permafrost lowlands. Ponds and lakes have been subject to both wetting and drying in a warming climate yet studies remain ambivalent regarding the causes of these changes. Goals of this study are to (i) investigate the variability of water body size distributions as a function of landscape characteristics, and (ii) assess the vulnerability of water bodies in different landscapes to scenarios of wetting and drying. Ponds and lakes were mapped from high-resolution aerial and satellite imagery with resolutions of 4 m or better in 14 regions in Alaska, Canada, and Siberia covering a total area of ca. 1.6*104 km². Whereas lake distributions are similar, pond distributions in our study regions vary significantly with the area-normalized number of ponds differing up to 3 orders of magnitude. Landscape characteristics that may explain the current water body distributions include climate (eg., precipitation, evapotranspiration, temperature), permafrost (eg., ground ice content, maximum thaw depth) and terrain characteristics (eg., topography, glaciation, landscape age) which we derive from in situ, remote sensing and modeling data sources. Multivariate regression analysis are used to relate landscape characteristics to distribution parameters. This study for the first time allows to quantify the circum-arctic variability of pond distribution. The current maps are the start of a high-resolution circum-arctic water body inventory and present a baseline for future surface inundation mapping and modelling. We present representative regional probability density functions (pdf) and assess the potential to upscale pdfs using spatial landscape characteristics. We then discuss the vulnerability of water bodies to wetting or drying based on the distribution parameters, their correlation with landscape characteristics and the likeliness of both to change in different future climate scenarios.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-16
    Description: Sub-grid and small scale processes occur in various ecosystems and landscapes (e.g., periglacial ecosystems, peatlands and vegetation patterns). These local heterogeneities are often important or even fundamental to better understand general and large scale properties of the system, but they are either ignored or poorly parameterized in regional and global models. Because of their small scale, the underlying generating processes can be well explained and resolved only by local mechanistic models, which, on the other hand, fail to consider the regional or global influences of those features. A challenging problem is then how to deal with these interactions across different spatial scales, and how to improve our understanding of the role played by local soil heterogeneities in the climate system. This is of particular interest in the northern peatlands, because of the huge amount of carbon stored in these regions. Land-atmosphere greenhouse gas fluxes vary dramatically within these environments. Therefore, to correctly estimate the fluxes a description of the small scale soil variability is needed. Applications of statistical physics methods could be useful tools to upscale local features of the landscape, relating them to large-scale properties. To test this approach we considered a case study: the polygonal tundra. Cryogenic polygons, consisting mainly of elevated dry rims and wet low centers, pattern the terrain of many subartic regions and are generated by complex crack-and-growth processes. Methane, carbon dioxide and water vapor fluxes vary largely within the environment, as an effect of the small scale processes that characterize the landscape. It is then essential to consider the local heterogeneous behavior of the system components, such as the water table level inside the polygon wet centers, or the depth at which frozen soil thaws. We developed a stochastic model for this environment using Poisson-Voronoi diagrams, which is able to upscale statistical large scale properties of the system taking into account the main processes within the single polygons. We compare the results with available recent field studies and demonstrate that the model captures the main statistical characteristics of the landscape and describes its dynamical behavior under climatic forcings (e.g., precipitation and evapotranspiration). We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. We also investigate hydraulic interconnectivities and large-scale drainage through percolation properties and thresholds in the Voronoi-Deleaunay graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system taking into account the main small-scale processes within the single polygons. Overall, the general agreement between field measurements and model results suggests that such statistical methods and simple parameterizations, if accurately tuned with field data, could be a powerful way to consider spatial scale interactions in such heterogenous and complex environments. http://www.earth-syst-dynam-discuss.net/3/453/2012/esdd-3-453-2012.html
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...