ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • PANGAEA  (657)
  • COPERNICUS GESELLSCHAFT MBH  (4)
  • AGU  (3)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    AGU
    In:  EPIC3AGU Fall Meeting 2017, New Orleans, 2017-12-11-2017-12-15New Orleans, AGU
    Publikationsdatum: 2018-01-07
    Beschreibung: A prominent two-step rise in atmospheric CO2 marked the end of the last glacial. The steps coincided with climatic intervals Heinrich Stadial 1 (HS1) and the Younger Dryas (YD). Records of 231Pa/230Th on sediment cores bathed by NADW, revealed a rapid reduction of the Atlantic Meridional Overturning Circulation (AMOC), during these intervals. It was argued that a weakened AMOC would have significantly reduced the efficiency of the biological pump and thus might have contributed to the rise in atmospheric CO2. Despite playing an important role, this process fails to account for the enigmatic drop in atmospheric Δ14C and δ13C during HS1 that marks the first step of the CO2-rise. Increasing CO2-concentrations with a simultaneous drop in their Δ14C, call for the ventilation of an old and 14C-depleted carbon reservoir. In this respect, several studies point to the presence of very old, 14C-depleted deep-waters in the glacial Southern Ocean, which rejuvenated during the last deglaciation. However, the accumulation of 14C-depleted, carbon-rich waters in the deep Southern Ocean requires circulation patterns that significantly differ from todays. Here we present a combined set of 231Pa/230Th-, Rare Earth Element- and XRF-proxy records to understand the evolution of the South Pacific Overturning Circulation (SPOC) over the last 35,000 years. Our reconstructions are based on a transect of five sediment cores from the Southwest Pacific, covering the AAIW as well as the UCDW and LCDW. Our data show that throughout the last glacial the SPOC was significantly weakened. This reduction favored the observed accumulation of 14C-depleted CO2 in Circumpolar Deep Waters (CDW). Parallel to the HS1 increase of atmospheric CO2, the deep circulation picked up its pace and recovered toward the Holocene. This trend is in remarkable agreement with water mass radiocarbon reconstructions from the very same area, as well as with atmospherical changes in CO2, Δ14C and δ13C. Hence, we are confident that the Southern Ocean – represented here by the South Pacific – played the dominant role in the first rise in atmospheric CO2. In addition the observed deglacial SPOC strengthening may have supported the transport of warm CDW onto the shelf areas since the timing of retreating West Antarctic ice sheets is in good agreement with recent reconstructions.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-12-21
    Beschreibung: Southern Ocean westerly wind intensity and position are thought to play a crucial role in controlling glacial/interglacial CO2 changes through their impact on Antarctic upwelling intensity and the delivery of iron-rich dust that stimulates biological production during glacial periods. Sediment-core grain size records can provide key insights into changes in wind strength and source-area characteristics over glacial-interglacial timescales. However, so far, little is known about G/IG grain size changes in Southern Ocean sediments. For this study, we analyzed the grain-size distributions of two subantarctic deep sea sediments cores from the Pacific (PS75/056-1) and Atlantic (ODP Site 1090) sectors of the Southern Ocean. Dust mean grain size shows opposing trends in the two Southern Ocean sectors. Coarser glacial grain sizes are observed in the Pacific sector, while finer glacial grain-sizes are observed in the Atlantic. Our results suggest that changes in the latitudinal position of the SWW had distinct impacts on grain size distribution in the Atlantic and Pacific sectors, also likely associated with shifts in the dust source areas. These findings indicate that more extensive studies of grain-size distribution in the Southern Ocean can provide important insights on the timing and latitudinal extent of the westerly winds changes during ice ages.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-09-13
    Beschreibung: Proxy-based reconstructions of past changes in the marine biological carbon pumps are limited, especially in the Southern Ocean. This work provides new insights into the productivity variations in the Pacific sector of the Southern Ocean. We present new data derived from three sediment cores that show glacial/interglacial coccolithophore variability across Marine Isotope Stage 11 (MIS 11). The cores were retrieved during R/V Polarstern cruise PS75 from the Subantarctic Zone and Polar Front Zone at the western flank of the East Pacific Rise and in the vicinity of the Antarctic-Pacific Ridge. Coccolithophore assemblages were overwhelmingly dominated by the species Gephyrocapsa caribbeanica and small Gephyrocapsa. Total numbers of coccoliths, coccolith accumulation rates, coccolith fraction (CF; 〈20 μm fraction) Sr/Ca data, and temperature-corrected CF Sr/Ca records consistently showed an increase in coccolithophore productivity during Termination V (MIS 12-11 boundary), highest productivity throughout MIS 11 (~424–374 kyr), and a decrease during late MIS 11 in all the cores. We end with a discussion of back-calculated coccolith calcification rate in the surface ocean and its potential contribution to changes in the concentration of atmospheric CO2.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 8, pp. 1-16, ISSN: 1814-9324
    Publikationsdatum: 2019-07-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2018-08-10
    Beschreibung: During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of oxygen minimum zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-X-ray-fluorescence (micro-XRF) data and sediment facies analysis of laminae reveal an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events related to the retreating sea ice margin. We identified five laminated sections in the deglacial part of our site. Lamina counts were carried out on these sections and correlated with the Bølling–Allerød and Preboreal phases in the North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual lamina couplets (varves). The observed rapid decadal intensifications of anoxia, in particular within the Bølling–Allerød, are tightly coupled to short-term warm events through increases in regional export production. This dependence of laminae formation on warmer temperatures is underlined by a correlation with published Bering Sea sea surface temperature records and δ18O data of planktic foraminifera from the Gulf of Alaska. The rapidity of the observed changes strongly implies a close atmospheric teleconnection between North Pacific and North Atlantic regions. We suggest that concomitant increases in export production and subsequent remineralization of organic matter in the Bering Sea, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1 mL L−1 and caused laminae preservation. Calculated benthic–planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow for the determination of calendar age control points for the Bølling–Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting surface reservoir ages range within 730–990 yr during the Bølling–Allerød, 800–1100 yr in the Younger Dryas, and 765–775 yr for the Preboreal.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 18(1), pp. 67-87, ISSN: 1814-9324
    Publikationsdatum: 2022-02-15
    Beschreibung: Mineral dust aerosol constitutes an important component of the Earth’s climate system, not only on short timescales due to direct and indirect influences on the radiation budget but also on long timescales by acting as a fertilizer for the biosphere and thus affecting the global carbon cy- cle. For a quantitative assessment of its impact on the global climate, state-of-the-art atmospheric and aerosol models can be utilized. In this study, we use the ECHAM6.3-HAM2.3 model to perform global simulations of the mineral dust cy- cle for present-day (PD), pre-industrial (PI), and last glacial maximum (LGM) climate conditions. The intercomparison with marine sediment and ice core data, as well as other mod- eling studies, shows that the obtained annual dust emissions of 1221, 923, and 5159 Tg for PD, PI, and LGM, respectively, generally agree well with previous findings. Our analyses fo- cusing on the Southern Hemisphere suggest that over 90 % of the mineral dust deposited over Antarctica are of Australian or South American origin during both PI and LGM. How- ever, contrary to previous studies, we find that Australia con- tributes a higher proportion during the LGM, which is mainly caused by changes in the precipitation patterns. Obtained in- creased particle radii during the LGM can be traced back to increased sulfate condensation on the particle surfaces as a consequence of longer particle lifetimes. The meridional transport of mineral dust from its source regions to the South Pole takes place at different altitudes depending on the grain size of the dust particles. We find a trend of generally lower transport heights during the LGM compared to PI as a con- sequence of reduced convection due to colder surfaces, indi- cating a vertically less extensive Polar cell.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-29
    Beschreibung: Changes in Southern Ocean export production have broad biogeochemical and climatic implications. Specifically, iron fertilization likely increased subantarctic nutrient utilization and enhanced the efficiency of the biological pump during glacials. However, past export production in the subantarctic southeastern Pacific is poorly documented, and its connection to Fe fertilization, potentially related to Patagonian Ice Sheet dynamics, is unknown. We report biological productivity changes over the past 400 kyr, based on a combination of 230Thxs-normalized and stratigraphy-based mass accumulation rates of biogenic barium, organic carbon, biogenic opal and calcium carbonate as indicators of paleo-export production in a sediment core upstream of the Drake Passage (57.5∘ S, 70.3∘ W). In addition, we use fluxes of iron and lithogenic material as proxies for terrigenous input, and thus potential micronutrient supply. Stratigraphy-based mass accumulation rates are strongly influenced by bottom-current dynamics, which result in variable sediment focussing or winnowing at our site. Carbonate is virtually absent in the core, except during peak interglacial intervals of the Holocene, and Marine Isotope Stages (MIS) 5 and 11, likely caused by transient decreases in carbonate dissolution. All other proxies suggest that export production increased during most glacial periods, coinciding with high iron fluxes. Such augmented glacial iron fluxes at the core site were most likely derived from glaciogenic input from the Patagonian Ice Sheet promoting the growth of phytoplankton. Additionally, glacial export production peaks are also consistent with northward shifts of the Subantarctic and Polar Fronts, which positioned our site south of the Subantarctic Front and closer to silicic acid-rich waters of the Polar Frontal Zone. However, glacial export production near the Drake Passage was lower than in the Atlantic and Indian sectors of the Southern Ocean, which may relate to complete consumption of silicic acid in the study area. Our results underline the importance of micro-nutrient fertilization through lateral terrigenous input from South America rather than eolian transport and exemplify the role of frontal shifts and nutrient limitation for past productivity changes in the Pacific entrance to the Drake Passage.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute - Polarstern core repository
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ANT-XXVI/2; AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS75/093-1TC; PS75 BIPOMAC; South Pacific Ocean; TC; Trigger corer
    Materialart: Dataset
    Format: unknown
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Alfred Wegener Institute - Polarstern core repository
    Publikationsdatum: 2023-03-16
    Schlagwort(e): ANT-XXVI/2; AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS75/100-4TC; PS75 BIPOMAC; South Pacific Ocean; TC; Trigger corer
    Materialart: Dataset
    Format: unknown
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...