ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-23
    Description: Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ICES
    In:  [Paper] In: ICES Annual Science Conference, 22.-26.09.2008, Halifax, Canada .
    Publication Date: 2017-01-06
    Description: A considerable amount of primary production by marine phytoplankton is released to seawater as dissolved organic matter (DOM) via exudation and leakage processes. The labile fraction of DOM can either directly serve as a source of energy and nutrients or is transformed to particulate matter by abiotic gel particle formation. Principally, both pathways induce diverse effects on higher trophic levels, as they: (i) affect the growth of bacteria and photo-autotrophic nanoplankton, which directly affects the microbial foodweb, and (ii) enhance the formation of aggregates, which provide pelagic microhabitats but also accelerate the export of organic matter to the benthos. Reliable biogeochemical flux estimates of these distinct pathways will crucially depend on our understanding of small-scale processes. Here, we show examples that address the microbial turnover of organic matter and how it is related to primary and secondary production in the North Atlantic and at sites in shelf regions. Recent findings on the sensitivity of microbial processes to changes in temperature and pH will be incorporated. Ecosystems in coastal and shelf regions are most sensitive to anthropogenic impacts, as they are susceptible not only to global changes but also to regional changes. We will therefore give an outlook on how to improve monitoring, experimental, and modelling strategies to better account for microbial foodweb dynamics when assessing climate change effects on ecosystems in coastal and shelf regions.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...