ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-24
    Description: Due to strong mean state‐biases most coupled models are unable to simulate equatorial Atlantic variability. Here, we use the Kiel Climate Model to assess the impact of bias reduction on the seasonal prediction of equatorial Atlantic sea surface temperature (SST). We compare a standard experiment (STD) with an experiment that employs surface heat flux correction to reduce the SST bias (FLX) and, in addition, apply a correction for initial errors in SST. Initial conditions for both experiments are generated in partially coupled mode, and seasonal hindcasts are initialized at the beginning of February, May, August and November for 1981–2012. Surface heat flux correction generally improves hindcast skill. Hindcasts initialized in February have the least skill, even though the model bias is not particularly strong at that time of year. In contrast, hindcasts initialized in May achieve the highest skill. We argue this is because of the emergence of a closed Bjerknes feedback loop in boreal summer in FLX that is a feature of observations but is missing in STD.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-24
    Description: We investigate the daily variability of the East Asian summer monsoon (EASM) by projecting daily wind anomaly data onto the two major modes of an interannual multivariate Empirical Orthogonal Functions analysis. Mode 1, closely resembling the Pacific-Japan (PJ) pattern and referred to as PJ-mode, transits from positive to negative phase around mid-summer consistent with the Meiyu rains predominantly being an early summer phenomenon. Mode 2, which is influenced by the Indian summer monsoon (ISM) and referred to as ISM-mode, peaks in late July and early August and is associated with rainfall farther north over China. We then analyze the relation between the intraseasonal variation of the EASM and the Madden-Julian Oscillation (MJO) by analyzing circulation anomalies following MJO events. In the lower troposphere, the circulation anomalies associated with the MJO most strongly project on the PJ-mode. MJO phases 1-4 (5-8) favor the positive (negative) phase of the PJ-mode by favoring the anticyclonic (cyclonic) anomalies over the subtropical western North Pacific. In the upper troposphere, the circulation anomalies associated with the MJO project mainly on the ISM-mode.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Royal Meteorological Society | Wiley
    In:  Atmospheric Science Letters, 20 (5). e900.
    Publication Date: 2019-08-08
    Description: Recent studies using reanalysis data and complex models suggest that the Tropics influence midlatitude blocking. Here, the influence of tropical precipitation anomalies is investigated further using a dry dynamical model driven by specified diabatic heating anomalies. The model uses a quasi‐realistic setup based on idealized orography and an idealized representation of the land‐ocean thermal contrast. Results concerning the El Niño Southern Oscillation and the Madden‐Julian Oscillation are mostly consistent with previous studies and emphasize the importance of tropical dynamics for driving the variability of blocking at midlatitudes. It is also shown that a common bias in models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, excessive tropical precipitation, leads to an underestimation of midlatitude blocking in our model, also a common bias in the CMIP5 models. The strongest blocking anomalies associated with the tropical precipitation bias are found over Europe, where the underestimation of blocking in CMIP5 models is also particularly strong.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Wiley | AGU
    In:  Journal of Geophysical Research: Oceans, 124 (4). pp. 2374-2403.
    Publication Date: 2019-08-09
    Description: The Bjerknes feedback is the dominant positive feedback in the equatorial ocean basins. To examine the seasonality, symmetry, and stationarity of the Pacific and Atlantic Bjerknes feedbacks we decompose them into three feedback elements that relate thermocline depth, sea surface temperature (SST), and western basin wind stress variability to each other. We partition feedback elements into composites associated with positive or negative anomalies. Using robust regression, we diagnose the strength of each composite. For the recent period 1993‐2012, composites of the Pacific Bjerknes feedback elements agree well with previous work. Positive composites are generally stronger than negative composites, and all feedback elements are weakest in late boreal spring. In the Atlantic, differences between positive and negative composites are less consistent across feedback elements. Specifically, wind variability seems to play a less important role in shaping atmosphere‐ocean coupling in the Atlantic when compared to the Pacific. However, a clear seasonality emerges: Feedback elements are generally strong in boreal summer and, for the negative composites, again in boreal winter. The Atlantic Bjerknes feedback is dominated by subsurface‐surface coupling. Applying our analysis to overlapping 25‐year periods for 1958‐2009 shows that the strengths of feedback elements in both ocean basins vary on decadal time scales. While the overall asymmetry of the Pacific Bjerknes feedback is robust, the strength and symmetry of Atlantic feedback elements vary considerably between decades. Our results indicate that the Atlantic Bjerknes feedback is non‐stationary on decadal time scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (3). pp. 2037-2048.
    Publication Date: 2019-09-23
    Description: Monthly mean sea level anomalies in the tropical Pacific for the period 1961-2002 are reconstructed using a linear, multi-mode model driven by monthly mean wind stress anomalies from the NCEP/NCAR and ERA-40 reanalysis products. Overall, the sea level anomalies reconstructed by both wind stress products agree well with the available tide gauge data, although with poor performance at Kanton Island in the western-central equatorial Pacific and reduced amplitude at Christmas Island. The reduced performance is related to model error in locating the pivot point in sea level variability associated with the so-called “tilt” mode. We present evidence that the pivot point was further west during the period 1993-2014 than during the period 1961-2002 and attribute this to a persistent upward trend in the zonal wind stress variance along the equator west of 160° W throughout the period 1961-2014. Experiments driven by the zonal component of the wind stress alone reproduce much of the trend in sea level found in the experiments driven by both components of the wind stress. The experiments show an upward trend in sea level in the eastern tropical Pacific over the period 1961-2002, but with a much stronger upward trend when using the NCEP/NCAR product. We argue that the latter is related to an overly strong eastward trend in zonal wind stress in the eastern-central Pacific that is believed to be a spurious feature of the NCEP/NCAR product.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multi-platform four-dimensional observational approach. Research vessel, multiple glider and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The dataset consists of 〉 10000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ∼ 0.25 m/s at 100 to 200 m depth was observed. Starting on January 20 a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentrations 〈 1μmol/kg, an elevated nitrogen-deficit of ∼ 17μmol/l and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small scale salinity and oxygen structures were formed by along-isopycnal stirring and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open-ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: We show how a barotropic shallow water model can be used to decompose the mean barotropic transport from a high-resolution ocean model based on the vertically-averaged momentum equations. We apply the method to a high resolution model of the North Atlantic for which the local vorticity budget is both noisy and dominated by small spatial scales. The shallow water model acts as an effective filter and clearly reveals the transport driven by each term. The potential energy (JEBAR) term is the most important for driving transport, including in the northwest corner, while mean flow advection is important for driving transport along f/H contours around the Labrador Sea continental slope. Both the eddy momentum flux and the mean flow advection terms drive significant transport along the pathway of the Gulf Stream and the North Atlantic Current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Recent evidence from mooring data in the equatorial Atlantic reveals that semi-annual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of 10's of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealised model set-up that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley
    In:  Atmospheric Science Letters, 14 (1). pp. 14-19.
    Publication Date: 2019-09-23
    Description: We report on model experiments that support the hypothesis that the second mode of variability of the East Asian Summer Monsoon is influenced by the variability of the Indian Summer Monsoon. The results suggest that the recent trend towards drier conditions in northern China in summer is, at least partly, a consequence of the synchronous drying trend over India in summer noted by some authors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (1). pp. 359-376.
    Publication Date: 2019-09-23
    Description: We use an eddying realistic primitive equation model of the Southern Ocean to examine the spatial and temporal distribution of near-inertial wind-power input (WPI) and near-inertial energy (NIE) in the Southern Ocean. We find that the modelled near-inertial WPI is almost proportional to inertial wind-stress variance (IWSV), while the modelled NIE is modulated by the inverse of the mixed-layer depth. We go on to assess recent decadal trends of near-inertial WPI from trends of IWSV based on reanalysis wind-stress. Averaged over the Southern Ocean, annual-mean IWSV is found to have increased by 16 percent over the years 1979 through 2011. Part of the increase of IWSV is found to be related to the positive trend of the Southern Annular Mode over the same period. Finally, we show that there are horizontal local maxima of NIE at depth that are almost exclusively associated with anticyclonic eddies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...