ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (1)
  • Wiley  (1)
  • 2010-2014  (2)
  • 1
    Publication Date: 2012-04-15
    Description: Numerical modelling by finite element methods provides two significant insights into the formation of the giant amethyst geodes of the Paraná volcanic province: the conditions needed to open the cavities and the conditions that control their size and shape. Giant amethyst geodes were formed in the Cretaceous (135 Ma) in altered volcanic rocks by water vapour pressure (Δp) at about 0.5 MPa under an altered basalt cover of 5–20 m. Only rocks with Young’s modulus values (E) in the range 1–2 GPa can sustain ballooning, which is the growth of a cavity in a ductile medium by the pressure of water and its vapour. The size of the proto-geode is dependent on the water vapour pressure, which is directly related to thickness of the overlying basalt. Varying the yield points causes the formation of either prolate or oblate cavities. A low transition point (smaller than 0.18 MPa) generates a prolate-shaped cavity, whereas a high transition point (larger than 0.18 MPa) generates oblate proto-geodes. Proto-geodes are smaller when Young’s modulus is higher (rock is less altered) or when water vapour pressure is lower (because of thinner overburden of basalt). The calculations are an indication that the processes operative in the altered basalts led to the opening of giant cavities by ballooning.
    Print ISSN: 1468-8115
    Electronic ISSN: 1468-8123
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-27
    Description: The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...