ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • Springer  (12)
  • 2015-2019  (12)
  • 1
    Publication Date: 2019-03-28
    Description: Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model’s atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or ”warming hole”—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-13
    Description: Tropical influence on the austral summer Southern Annular Mode (SAM) over the ERA-40 period 1960/1961–2001/2002 is investigated using (1) a partially coupled climate model (PCM) driven by observed wind stress and (2) a version of the ECMWF atmospheric model by means of a relaxation technique. We show that the tropical influence in the PCM is dominated by El Niño Southern Oscillation (ENSO) whereas the relaxation experiments suggest an additional influence independent of ENSO. In the observations, we find that the simultaneous influence of ENSO on the summer SAM was much stronger after 1979 than before, with the consequence that the ensemble mean of the PCM captures around 50 % of the interannual variance of the SAM after 1979 and less than 10 % before. Nevertheless, in the ensemble mean of the PCM, the relationship between ENSO and the summer SAM is stable throughout the whole period 1960/1961–2001/2002, and it is the individual ensemble members that exhibit a non-stationary relationship like that found in the observations. It follows that variability not related to the observed wind forcing used to drive the PCM is important for obscuring the ENSO/SAM relationship. The experiments using relaxation show that tropical forcing was important for both the interannual variability and the trend of the summer SAM, even before 1979. Adding the observed extratropical sea surface temperature and sea-ice (SSTSI) to the tropical relaxation runs improves the model performance, indicative of a positive feedback from extratropical SSTSI onto the SAM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2–5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2–5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-23
    Description: The Atlantic meridional overturning circulation (AMOC) and the subpolar gyre (SPG) are important elements in mechanisms for multidecadal variability in models in the North Atlantic Ocean. In this study, a 2000-year long global ocean model integration forced with the atmospheric patterns associated with a white noise North Atlantic Oscillation (NAO) index is shown to have three distinct timescales of North Atlantic Ocean variability. First, an interannual timescale with variability shorter than 15 years, that can be related to Ekman dynamics. Second, a multidecadal timescale, on the 15- to 65-year range, that is mainly concentrated in the SPG region and is controlled by constructive interference between density anomalies around the gyre and the changing NAO forcing. Finally, the centennial timescales, with variability longer than 65 years, that can be attributed to the ocean being in a series of quasi-equilibrium states. The relationship between the ocean’s response and the NAO index differs for each timescale; the 15-year and shorter timescales are directly related to the NAO of the same year, 15- to 65-year timescales are dependent on the NAO index in the last 25–30 years in a sinusoidal sense while the 65-year and longer timescales relate to a sum of the last 50–80 years of the NAO index.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-13
    Description: The variability of the East Asian summer monsoon (EASM) is studied using a pacemaker technique driven by ENSO in an atmospheric general circulation model (AGCM) coupled to a slab mixed layer model. In the pacemaker experiments, sea surface temperature (SST) is constrained to observations in the eastern equatorial Pacific through a q-flux that measures the contribution of ocean dynamics to SST variability, while the AGCM is coupled to the slab model. An ensemble of pacemaker experiments is analyzed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The results show that the pacemaker experiments simulate a substantial amount (around 45 %) of the variability of the first mode (the Pacific-Japan pattern) in ERA40 from 1979 to 1999. Different from previous work, the pacemaker experiments also simulate a large part (25 %) of the variability of the second mode, related to rainfall variability over northern China. Furthermore, we find that the lower (850 hPa) and the upper (200 hPa) tropospheric circulation of the first mode display the same degree of reproducibility whereas only the lower part of the second mode is reproducible. The basis for the success of the pacemaker experiments is the ability of the experiments to reproduce the observed relationship between El Niño Southern Oscillation (ENSO) and the EASM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  Climate Dynamics, 51 (1-2). pp. 597-612.
    Publication Date: 2019-05-28
    Description: The Atlantic Niño is the dominant mode of interannual sea surface temperature (SST) variability in the eastern equatorial Atlantic. Current coupled global climate models struggle to reproduce its variability. This is thought to be partly related to an equatorial SST bias that inhibits summer cold tongue growth. Here, we address the question whether the equatorial SST bias affects the ability of a coupled global climate model to produce realistic dynamical SST variability. We assess this by decomposing SST variability into dynamical and stochastic components. To compare our model results with observations, we employ empirical linear models of dynamical SST that, based on the Bjerknes feedback, use the two predictors sea surface height and zonal surface wind. We find that observed dynamical SST variance shows a pronounced seasonal cycle. It peaks during the active phase of the Atlantic Niño and is then roughly 4–7 times larger than stochastic SST variance. This indicates that the Atlantic Niño is a dynamical phenomenon that is related to the Bjerknes feedback. In the coupled model, the SST bias suppresses the summer peak in dynamical SST variance. Bias reduction, however, improves the representation of the seasonal cold tongue and enhances dynamical SST variability by supplying a background state that allows key feedbacks of the tropical ocean–atmosphere system to operate in the model. Due to the small zonal extent of the equatorial Atlantic, the observed Bjerknes feedback acts quasi-instantaneously during the dynamically active periods of boreal summer and early boreal winter. Then, all elements of the observed Bjerknes feedback operate simultaneously. The model cannot reproduce this, although it hints at a better performance when using bias reduction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-28
    Description: The spatial pattern of the first mode of interannual variability associated with the East Asian summer monsoon (EASM), obtained from a multivariate Empirical Orthogonal Functions (MV-EOF) analysis, corresponds to the Pacific–Japan (PJ) pattern and is referred to as the PJ-mode. The present study investigates the interannual variation of the PJ-mode from the perspective of the intraseasonal timescale. In particular, the impact of the Madden–Julian oscillation (MJO) on the interannual variation of the PJ-mode is investigated. The results show that the MJO has a significant influence on the interannual variation of the PJ-mode mainly in the lower troposphere (850 hPa) and that the former accounts for approximately 11% of the amplitude of the latter. The major part of the contribution comes from a change in frequency of the different phases of the MJO, especially that of MJO phase 6. This suggests that intraseasonal variation of the convection anomalies over the tropical eastern Indian and western Pacific Oceans plays an important role in the interannual variation of the PJ-mode. In addition, MJO phase 7 also contributes to the interannual variability of the PJ-mode, in this case induced by both the change in frequency and the change in circulation anomalies associated with MJO phase 7.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-24
    Description: Near-inertial oscillations are ubiquitous in the ocean and are believed to play an important role in the global climate system. Studies on wind power input to near-inertial motions (WPI) have so far focused primarily on estimating the time-mean WPI, with little attention being paid to its temporal variability. In this study, a combination of atmospheric reanalysis products, a high-resolution ocean model and linear regression models are used to investigate for the first time the relationship between interannual variability of WPI in the North Atlantic and the North Atlantic Oscillation (NAO), motivated by the idea that the NAO serves as a good indicator for storminess over the North Atlantic and that storms account for the majority of WPI. It is found that WPI at low and high latitudes of the North Atlantic is significantly correlated to the NAO, owing to its influence on the configuration of the storm track. Positive (negative) NAO conditions are associated with increased WPI in the subpolar (subtropical) ocean. Basin-wide WPI is found to be significantly enhanced under negative NAO conditions, but is not significantly different from the climatological average under positive NAO conditions. This indicates a weak inverse relationship between basin-wide WPI and the NAO, contradicting intuitive expectations. The asymmetric impact of the NAO on basin-wide WPI results from greater sensitivity of WPI to near-inertial wind forcing at lower latitudes due to the variation of the Coriolis parameter with latitude.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: An ocean circulation model is run using two different idealized equatorial basin configurations under steady wind forcing. Both model versions produce bands of vertically alternating zonal flow at depth, similar to observed Equatorial Deep Jets (EDJs) and with a time scale corresponding to that of the gravest equatorial basin mode for the dominant baroclinic vertical normal mode. Both model runs show evidence for enhanced variability in the surface signature of the North Equatorial Counter Current (NECC) with the same time scale. We also find the same link between the observed NECC and the EDJs in the Atlantic by comparing the signature of the EDJ in moored zonal velocity data at 23° W on the equator with the signature of the NECC in geostrophic velocities from altimeter data. We argue that the presence of a peak in variability in the NECC associated with the EDJ basin mode period is evidence that the influenceatthis time scale is upward, from the EDJ to the NECC
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: In the early 1980s, Germany started a new era of modern Antarctic research. The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) was founded and important research platforms such as the German permanent station in Antarctica, today called Neumayer III, and the research icebreaker Polarstern were installed. The research primarily focused on the Atlantic sector of the Southern Ocean. In parallel, the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) started a priority program ‘Antarctic Research’ (since 2003 called SPP-1158) to foster and intensify the cooperation between scientists from different German universities and the AWI as well as other institutes involved in polar research. Here, we review the main findings in meteorology and oceanography of the last decade, funded by the priority program. The paper presents field observations and modelling efforts, extending from the stratosphere to the deep ocean. The research spans a large range of temporal and spatial scales, including the interaction of both climate components. In particular, radiative processes, the interaction of the changing ozone layer with large-scale atmospheric circulations, and changes in the sea ice cover are discussed. Climate and weather forecast models provide an insight into the water cycle and the climate change signals associated with synoptic cyclones. Investigations of the atmospheric boundary layer focus on the interaction between atmosphere, sea ice and ocean in the vicinity of polynyas and leads. The chapters dedicated to polar oceanography review the interaction between the ocean and ice shelves with regard to the freshwater input and discuss the changes in water mass characteristics, ventilation and formation rates, crucial for the deepest limb of the global, climate-relevant meridional overturning circulation. They also highlight the associated storage of anthropogenic carbon as well as the cycling of carbon, nutrients and trace metals in the ocean with special emphasis on the Weddell Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...