ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chaperone  (1)
  • Condensed Matter: Electronic Properties, etc.
  • Springer  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1432-2048
    Keywords: Chaperone ; Chloroplasts ; Chromoplasts ; Heat-shock protein ; Secale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A partial cDNA which codes for the β-subunit of a plastidic chaperonin 60 (cpn60-β) from rye (Secale cereale L.) leaves was identified and sequenced, except for 46 amino acids of the N-terminus of the mature protein and the transit sequence. This is the first cpn60-β sequence determined for a monocotyledonous plant. Specific antibodies against cpn60-β were affinity-purified from an antiserum raised against the total soluble protein fraction of ribosome-deficient plastids. The localization of cpn60-β in chloroplasts or non-green plastids was confirmed by immunodetection in Percoll gradient-purified organelles. The expression and occurrence of cpn60-β was analysed by immunoblotting with the specific antibodies and Northern hybridization. The cpn60-β protein was constitutively expressed in various green and non-green tissues. It was evenly distributed along the major part of a rye leaf, while highest transcript levels occurred in the youngest and oldest leaf sections. The expression of the cpn60-β protein was not enhanced by a heat-shock treatment at 42 °C. The cpn60-β transcript and protein were more strongly expressed in various non-green, for instance etiolated, 70S-ribosome-deficient 32 °C-grown, or herbicide-bleached tissues, than in green leaves of rye. A rapid increase in the cpn60-β transcript level was also observed when green leaves were transferred from light to darkness while the protein level was not affected. The dark-induced increase in the cpn60-β transcript was totally suppressed in the presence of 2% sucrose. Inhibitor treatments suggested that the change in cpn60-β transcript level was not related to changes of the ATP supply of the tissue. While the large subunit of the photosynthetic protein ribulose-1,5-bisphosphate carboxylase was largely degraded during ripening of tomato fruits, high levels of cpn60-β were detected in tomato chromoplasts and in the yellow flower petals of Narcissus. Low levels of cpn60-β were detected in root tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...