ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America (SSA)  (48)
  • Blackwell Publishing Ltd  (1)
  • 1
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : In order to assess the effects. of silvicultural and drainage practices on water quality it is necessary to understand their impacts on hydrology. The hydrology of a 340 ha artificially drained forested watershed in eastern North Carolina was studied for a five-year period (1988–92). Effects of soils, beds and changes in vegetation on water table depth, evapotranspiration (ET) and drainage outflows were analyzed. Total annual outflows from the watershed varied from 29 percent of the rainfall during the driest year (1990) when mostly mature trees were present to as much as 53 percent during a year of normal rainfall (1992) after about a third of the trees were harvested. Annual ET from the watershed, calculated as the difference between annual rainfall and outflow, varied from 76 percent of the calculated potential ET for a dry year to as much as 99 percent for a wet year. Average estimated ET was 58 percent of rainfall for the five-year period. Flow rates per unit area were consistently higher from a smaller harvested block (Block B - 82 ha) of the watershed than from the watershed as a whole. This is likely due to time lags, as drainage water flows through the ditch-canal network in the watershed, and to timber harvesting of the smaller gaged block.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-01
    Description: With the implementation of the USGS National Earthquake Information Center Prompt Assessment of Global Earthquakes for Response system (PAGER), rapid determination of earthquake moment magnitude is essential, especially for earthquakes that are felt within the contiguous United States. We report an implementation of moment tensor processing for application to broad, seismically active areas of North America. This effort focuses on the selection of regional crustal velocity models, codification of data quality tests, and the development of procedures for rapid computation of the seismic moment tensor. We systematically apply these techniques to earthquakes with reported magnitude greater than 3.5 in continental North America that are not associated with a tectonic plate boundary.Using the 0.02–0.10 Hz passband, we can usually determine, with few exceptions, moment tensor solutions for earthquakes with Mw as small as 3.7. The threshold is significantly influenced by the density of stations, the location of the earthquake relative to the seismic stations and, of course, the signal-to-noise ratio. With the existing permanent broadband stations in North America operated for rapid earthquake response, the seismic moment tensor of most earthquakes that are Mw 4 or larger can be routinely computed. As expected the nonuniform spatial pattern of these solutions reflects the seismicity pattern. However, the orientation of the direction of maximum compressive stress and the predominant style of faulting is spatially coherent across large regions of the continent.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Seismological Society of America (SSA)
    Publication Date: 2015-05-05
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-25
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-12
    Description: We provide a complete description of the characteristics of excitation and attenuation of the ground motion in the Lake Van region (eastern Turkey) using a data set that includes three-component seismograms from the 23 October 2011 M w  7.1 Van earthquake, as well as its aftershocks. Regional attenuation and source scaling are parameterized to describe the observed ground motions as a function of distance, frequency, and magnitude. Peak ground velocities are measured in selected narrow frequency bands from 0.25 to 12.5 Hz; observed peaks are regressed to define a piecewise linear regional attenuation function, a set of excitation terms, and a set of site response terms. Results are modeled through random vibration theory (see Cartwright and Longuet-Higgins, 1956 ). In the log–log space, the regional crustal attenuation is modeled with a bilinear geometrical spreading characterized by a crossover distance at 40 km: fits our results at short distances ( r 〈40 km), whereas is better at larger distances (40〈 r 〈200 km). A frequency-dependent quality factor, Q ( f )=100( f / f ref ) 0.43 (in which f ref =1.0 Hz), is coupled to the geometrical spreading. Because of the inherent trade-off of the excitation/attenuation parameters ( and ), their specific values strongly depend on the choice made for the stress drop of the smaller earthquakes. After choosing a Brune stress drop Brune =4 MPa at M w =3.5, we were able to define (1) an effective high frequency, distance- and magnitude-independent roll-off spectral parameter, eff =0.03 s and (2) a size-dependent stress-drop parameter, which increases with moment magnitude, from Brune =4 MPa at M w  3.5 to Brune =20 MPa at M w  7.1. The set of parameters mentioned here may be used in order to predict the earthquake-induced ground motions expected from future earthquakes in the region surrounding Lake Van.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-08
    Description: The U.S. Geological Survey National Earthquake Information Center (NEIC) uses a variety of classical network-averaged magnitudes (e.g., m b and M s ) and waveform modeling procedures to determine the moment magnitude ( M w ) of an earthquake from teleseismic observations. Initial magnitude estimates are often inaccurate because of poor azimuthal control (sampling of the focal sphere) and/or intrinsic limitation of each method to a specific range of event size. To provide faster and more accurate estimates of the moment magnitude, source duration, and source complexity, NEIC is exploring the use of a variation of the empirical Green’s function (EGF) deconvolution procedure. This approach uses a predicted focal mechanism derived from the Global Centroid Moment Tensor Catalog to compute teleseismic P -wave synthetic seismograms, which are then deconvolved from observed P and SH waveforms to determine station-specific M w , source time function, and a network-averaged M w . Our EGF approach is validated using broadband waveforms from 246 earthquakes in the magnitude range M w  6.0–9.1. Within approximately 13 min of earthquake origin time, our procedure using teleseismic P waves only computes an M w that lies within ±0.25 of the final W -phase M w in the magnitude range 6–8. Using later arriving teleseismic SH phases results in an M w that lies within ±0.12 of the W -phase M w . For magnitude 8 or larger earthquakes, we underestimated the moment magnitude by up to 0.8 magnitude units, primarily due to the initial P phase not containing the total seismic moment release. Long-period phases such as the W -phase and surface waves that better characterize total moment release can also be incorporated in the processing.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-04
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-04
    Description: The M w  5.8 earthquake of 23 August 2011 (17:51:04 UTC) (moment, M 0 5.7 x 10 17 N·m) occurred near Mineral, Virginia, within the central Virginia seismic zone and was felt by more people than any other earthquake in United States history. The U.S. Geological Survey (USGS) received 148,638 felt reports from 31 states and 4 Canadian provinces. The USGS PAGER system estimates as many as 120,000 people were exposed to shaking intensity levels of IV and greater, with approximately 10,000 exposed to shaking as high as intensity VIII. Both regional and teleseismic moment tensor solutions characterize the earthquake as a northeast-striking reverse fault that nucleated at a depth of approximately 7±2 km. The distribution of reported macroseismic intensities is roughly ten times the area of a similarly sized earthquake in the western United States ( Horton and Williams, 2012 ). Near-source and far-field damage reports, which extend as far away as Washington, D.C., (135 km away) and Baltimore, Maryland, (200 km away) are consistent with an earthquake of this size and depth in the eastern United States (EUS). Within the first few days following the earthquake, several government and academic institutions installed 36 portable seismograph stations in the epicentral region, making this among the best-recorded aftershock sequences in the EUS. Based on modeling of these data, we provide a detailed description of the source parameters of the mainshock and analysis of the subsequent aftershock sequence for defining the fault geometry, area of rupture, and observations of the aftershock sequence magnitude–frequency and temporal distribution. The observed slope of the magnitude–frequency curve or b -value for the aftershock sequence is consistent with previous EUS studies ( b =0.75), suggesting that most of the accumulated strain was released by the mainshock. The aftershocks define a rupture that extends between approximately 2–8 km in depth and 8–10 km along the strike of the fault plane. Best-fit modeling of the geometry of the aftershock sequence defines a rupture plane that strikes N36°E and dips to the east-southeast at 49.5°. Moment tensor solutions of the mainshock and larger aftershocks are consistent with the distribution of aftershock locations, both indicating reverse slip along a northeast–southwest striking southeast-dipping fault plane. Online Material: Tables of regional moment tensor source parameters and aftershock location.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-10-01
    Description: Surface waves were generated by the North Korean nuclear explosion of 9 October 2006 and were recorded at epicentral distances up to 34 degrees , from which we estimated a surface wave magnitude (M (sub s) ) of 2.94 with an interstation standard deviation of 0.17 magnitude units. The International Data Center estimated a body-wave magnitude (m (sub b) ) of 4.1. This is the only explosion we have analyzed that was not easily screened as an explosion based on the differences between the M (sub s) and m (sub b) estimates. Additionally, this M (sub s) predicts a yield, based on empirical M (sub s) /yield relationships, that is almost an order of magnitude larger than the 0.5-1 kt reported for this explosion. We investigate how emplacement medium effects on surface wave moment and magnitude may have contributed to the yield discrepancy.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-01
    Description: With the implementation of the USGS National Earthquake Information Center Prompt Assessment of Global Earthquakes for Response system (PAGER), rapid determination of earthquake moment magnitude is essential, especially for earthquakes that are felt within the contiguous United States. We report an implementation of moment tensor processing for application to broad, seismically active areas of North America. This effort focuses on the selection of regional crustal velocity models, codification of data quality tests, and the development of procedures for rapid computation of the seismic moment tensor. We systematically apply these techniques to earthquakes with reported magnitude greater than 3.5 in continental North America that are not associated with a tectonic plate boundary. Using the 0.02-0.10 Hz passband, we can usually determine, with few exceptions, moment tensor solutions for earthquakes with M (sub w) as small as 3.7. The threshold is significantly influenced by the density of stations, the location of the earthquake relative to the seismic stations and, of course, the signal-to-noise ratio. With the existing permanent broadband stations in North America operated for rapid earthquake response, the seismic moment tensor of most earthquakes that are M (sub w) 4 or larger can be routinely computed. As expected the nonuniform spatial pattern of these solutions reflects the seismicity pattern. However, the orientation of the direction of maximum compressive stress and the predominant style of faulting is spatially coherent across large regions of the continent.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...