ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Varma, Vidya; Prange, Matthias; Merkel, Ute; Kleinen, Thomas; Lohmann, Gerrit; Pfeiffer, Madlene; Renssen, Hans; Wagner, Axel; Wagner, Sebastian; Schulz, Michael (2012): Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past, 8(2), 391-402, https://doi.org/10.5194/cp-8-391-2012
    Publication Date: 2019-05-25
    Description: The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dallmeyer, Anne; Claussen, Martin; Fischer, Nils; Haberkorn, Kerstin; Wagner, Sebastian; Pfeiffer, Madlene; Jin, Liya; Khon, Vyacheslav; Wang, Y; Herzschuh, Ulrike (2015): The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations. Climate of the Past, 11(2), 305-326, https://doi.org/10.5194/cp-11-305-2015
    Publication Date: 2019-12-05
    Description: The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.
    Type: Dataset
    Format: text/tab-separated-values, 76 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...