All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    In:  Supplement to: Engel, Anja; Cisternas Novoa, Carolina; Wurst, Mascha; Endres, Sonja; Tang, Tiantian; Schartau, Markus; Lee, Cindy (2014): No detectable effect of CO2 on elemental stoichiometry of Emiliania huxleyi in nutrient-limited, acclimated continuous cultures. Marine Ecology Progress Series, 507, 15-30,
    Publication Date: 2019-09-18
    Description: Effects of CO2 concentration on elemental composition of the coccolithophore Emiliania huxleyi were studied in phosphorus-limited, continuous cultures that were acclimated to experimental conditions for 30 d prior to the first sampling. We determined phytoplankton and bacterial cell numbers, nutrients, particulate components like organic carbon (POC), inorganic carbon (PIC), nitrogen (PN), organic phosphorus (POP), transparent exopolymer particles (TEP), as well as dissolved organic carbon (DOC) and nitrogen (DON), in addition to carbonate system parameters at CO2 levels of 180, 380 and 750 µatm. No significant difference between treatments was observed for any of the measured variables during repeated sampling over a 14 d period. We considered several factors that might lead to these results, i.e. light, nutrients, carbon overconsumption and transient versus steady-state growth. We suggest that the absence of a clear CO2 effect during this study does not necessarily imply the absence of an effect in nature. Instead, the sensitivity of the cell towards environmental stressors such as CO2 may vary depending on whether growth conditions are transient or sufficiently stable to allow for optimal allocation of energy and resources. We tested this idea on previously published data sets where PIC and POC divided by the corresponding cell abundance of E. huxleyi at various pCO2 levels and growth rates were available.
    Type: Dataset
    Format: text/tab-separated-values, 3723 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-09
    Description: Here we provide optimised vertical eddy diffusivity estimates for the PeECE III and KOSMOS 2013 mesocosm experiment, obtained from a model-based reanalysis. These diffusivities are derived from the observed temperature and salinity profiles that have been published in Schulz et al., 2008. Furthermore, we make our model code available, providing an adjustable tool to simulate vertical mixing in any other pelagic mesocosm. We also provide the interpolated and regridded temperature and salinity profiles of the PeECE III experiment as well as the density profiles which we calculated from the temperature and salinity profiles using the R package seacarb (Lavigne et al., 2011). These data files are required as input to run simulations of the PeECE III experiment with the 1D mesocosm mixing model. The columns of the environmental files (required input files for the model) from left to right are: Experiment year, month, day, Julian day, photosynthetically active radiation (PAR) [W/m^2], temperature [C], salinity [PSU], CO2 concentration [ppm], wind speed [m/s]. The rows list the respective value of each hour of the experiment. Temperature and salinity in this table are hourly interpolated values of the daily measurements published by the PeECE III team (2005). PAR has been calculated from global radiation data of Bergen provided by Olseth et al., 2005. In the temperature, salinity and density files, the rows indicate the depth (0.5 m resolution, the first row is the surface, the last row is the bottom), whereas the columns indicate the experiment time at an hourly resolution.
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...