ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • National Academy of Sciences  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2015-11-18
    Description: Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-09
    Description: Plastid transcription is mediated by two distinct types of RNA polymerases (RNAPs), bacterial-type RNAP (PEP) and phage-type RNAP (NEP). Recent genomic and proteomic studies revealed that higher plants have lost most prokaryotic transcription regulators and have acquired eukaryotic-type proteins during plant evolution. However, in vivo dynamics of chloroplast RNA polymerases and eukaryotic-type plastid nucleoid proteins have not been directly characterized experimentally. Here, we examine the association of the α-subunit of PEP and eukaryotic-type protein, plastid transcriptionally active chromosome 3 (pTAC3) with transcribed regions in vivo by using chloroplast chromatin immunoprecipitation (cpChIP) assays. PEP α-subunit preferentially associates with PEP promoters of photosynthesis and rRNA genes, but not with NEP promoter regions, suggesting selective and accurate recognition of PEP promoters by PEP. The cpChIP assays further demonstrate that the peak of PEP association occurs at the promoter-proximal region and declines gradually along the transcribed region. pTAC3 is a putative DNA-binding protein that is localized to chloroplast nucleoids and is essential for PEP-dependent transcription. Density gradient and immunoprecipitation analyses of PEP revealed that pTAC3 is associated with the PEP complex. Interestingly, pTAC3 associates with the PEP complex not only during transcription initiation, but also during elongation and termination. These results suggest that pTAC3 is an essential component of the chloroplast PEP complex. In addition, we demonstrate that light-dependent chloroplast transcription is mediated by light-induced association of the PEP–pTAC3 complex with promoters. This study illustrates unique dynamics of PEP and its associated protein pTAC3 during light-dependent transcription in chloroplasts.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...