ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-01
    Description: Due to improved laser scanning technology, laser scanner based deformation analyses are presently widespread. These deformation analyses are no longer based on individual points representing the deformation of an object at selected positions. Instead, they are based on a large number of scan points sampling the whole object. This fact either leads to challenges regarding metrological aspects as well as regarding modeling aspects:
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-01
    Description: In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode.A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-25
    Description: The accuracy of georeferenced TLS point clouds is directly influenced by site-dependent GNSS effects, deteriorating the accuracy of the ground control point coordinate estimation. Especially under challenging GNSS conditions, this is a crucial problem. One common approach is to minimize these effects by longer observation durations, which in turn increases the effort in time and cost. In this paper, an algorithm is proposed that provides accurate georeferencing results, even under challenging measurement conditions and short observation durations. It iteratively improves the georeferencing accuracy by determining and applying obstruction adaptive elevation masks to the GNSS observations. The algorithm is tested and assessed using the data of a field test. It is demonstrated that after only 5 minutes observation duration, the ground control point coordinates can be estimated with an accuracy of 1 to 2 cm, independent from the GNSS measurement conditions. Initial states of the elevation masks are determined from a point cloud that is georeferenced using coordinates from a single point positioning solution, enhanced by a RAIM-FDE approach. Afterwards, the coordinates are estimated in a weighted least-squares baseline solution and both, the elevation masks and the coordinate estimation, are iteratively improved. Besides the significant reduction of measurement time, the proposed algorithm allows for increasing the amount of ground control points and can be applied to other direct or indirect GNSS-based georeferencing approaches.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-01
    Description: When using terrestrial laser scanners for high quality analyses, calibrating the laser scanner is crucial due to unavoidable misconstruction of the instrument leading to systematic errors. Consequently, the development of calibration fields for laser scanner self-calibration is widespread in the literature. However, these calibration fields altogether suffer from the fact that the calibration parameters are estimated by analyzing the parameter differences of a limited number of substitute objects (targets or planes) scanned from different stations. This study investigates the potential of self-calibrating a laser scanner by scanning one single object with one single scan. This concept is new since it uses the deviation of each sampling point to the scanned object for calibration. Its applicability rests upon the integration of model knowledge that is used to parameterize the scanned object. Results show that this calibration approach is feasible leading to improved surface approximations. However, it makes great demands on the functional model of the calibration parameters, the stochastic model of the adjustment, the scanned object and the scanning geometry. Hence, to gain constant and physically interpretable calibration parameters, further improvement especially regarding functional and stochastic model is demanded.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-01
    Description: Triangulation-based range sensors, e.g. laser line scanners, are used for high-precision geometrical acquisition of free-form surfaces, for reverse engineering tasks or quality management. In contrast to classical tactile measuring devices, these scanners generate a great amount of 3D-points in a short period of time and enable the inspection of soft materials. However, for accurate measurements, a number of aspects have to be considered to minimize measurement uncertainties. This study outlines possible sources of uncertainties during the measurement process regarding the scanner warm-up, the impact of laser power and exposure time as well as scanner’s reaction to areas of discontinuity, e.g. edges. All experiments were performed using a fixed scanner position to avoid effects resulting from imaging geometry. The results show a significant dependence of measurement accuracy on the correct adaption of exposure time as a function of surface reflectivity and laser power. Additionally, it is illustrated that surface structure as well as edges can cause significant systematic uncertainties.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-26
    Description: The target-based point cloud registration and calibration of terrestrial laser scanners (TLSs) are mathematically modeled and solved by the least-squares adjustment. However, usual stochastic models are simplified to a large amount: They generally employ a single point measurement uncertainty based on the manufacturers’ specifications. This definition does not hold true for the target-based calibration and registration due to the fact that the target centroid is derived from multiple measurements and its uncertainty depends on the detection procedure as well. In this study, we empirically investigate the precision of the target centroid detection and define an empirical stochastic model in the form of look-up tables. Furthermore, we compare the usual stochastic model with the empirical stochastic model on several point cloud registration and TLS calibration experiments. There, we prove that the values of usual stochastic models are underestimated and incorrect, which can lead to multiple adverse effects such as biased results of the estimation procedures, a false a posteriori variance component analysis, false statistical testing, and false network design conclusions. In the end, we prove that some of the adverse effects can be mitigated by employing the a priori knowledge about the target centroid uncertainty behavior.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-01
    Description: The main reflectors of radio telescopes deform due to gravitation when changing their elevation angle. This can be analyzed by scanning the paraboloid surface with a terrestrial laser scanner and by determining focal length variations and local deformations from best-fit approximations.For the Effelsberg radio telescope, both groups of deformations are estimated from seven points clouds measured at different elevation angles of the telescope: the focal length decreases by 22.7 mm when tilting the telescope from 90 deg to 7.5 deg elevation angle. Variable deformations of ± 2 mm are detected as well at certain areas. Furthermore, a few surface panels seem to be misaligned.Apart from these results, the present study highlights the need for an appropriate measurement concept and for preprocessing stepswhen using laser scanners for area-based deformation analyses. Especially, data reduction, object segmentation and laser scanner calibration are discussed in more detail. An omission of these steps would significantly degrade the deformation analysis and the significance of its results. This holds for all sorts of laser scanner based analyses.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-25
    Description: The ability to acquire rapid, dense and high quality 3D data has made terrestrial laser scanners (TLS) a desirable instrument for tasks demanding a high geometrical accuracy, such as geodetic deformation analyses. However, TLS measurements are influenced by systematic errors due to internal misalignments of the instrument. The resulting errors in the point cloud might exceed the magnitude of random errors. Hence, it is important to assure that the deformation analysis is not biased by these influences. In this study, we propose and evaluate several strategies for reducing the effect of TLS misalignments on deformation analyses. The strategies are based on the bundled in-situ self-calibration and on the exploitation of two-face measurements. The strategies are verified analyzing the deformation of the Onsala Space Observatory’s radio telescope’s main reflector. It is demonstrated that either two-face measurements as well as the in-situ calibration of the laser scanner in a bundle adjustment improve the results of deformation analysis. The best solution is gained by a combination of both strategies.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-01
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-26
    Description: In terms of high precision requested deformation analyses, evaluating laser scan data requires the exact knowledge of the functional and stochastic model. If this is not given, a parameter estimation leads to insufficient results. Simulating a laser scanning scene provides the knowledge of the exact functional model of the surface. Thus, it is possible to investigate the impact of neglecting spatial correlations in the stochastic model. Here, this impact is quantified through statistical analysis.The correlation function, the number of scanning points and the ratio of colored noise in the measurements determine the covariances in the simulated observations. It is shown that even for short correlation lengths of less than 10 cm and a low ratio of colored noise the global test as well as the parameter test are rejected. This indicates a bias and inconsistency in the parameter estimation. These results are transferable to similar tasks of laser scanner based surface approximation.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...