ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-07
    Description: Journal of Proteome Research DOI: 10.1021/acs.jproteome.5b00307
    Print ISSN: 1535-3893
    Electronic ISSN: 1535-3907
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-05-25
    Description: The two-dimensional scattering of water waves over a finite region of arbitrarily varying topography linking two semi-infinite regions of constant depth is considered. Unlike many approaches to this problem, the formulation employed is exact in the context of linear theory, utilizing simple combinations of Green's functions appropriate to water of constant depth and the Cauchy-Riemann equations to derive a system of coupled integral equations for components of the fluid velocity at certain locations. Two cases arise, depending on whether the deepest point of the topography does or does not lie below the lower of the semi-infinite horizontal bed sections. In each, the reflected and transmitted wave amplitudes are related to the incoming wave amplitudes by a scattering matrix which is defined in terms of inner products involving the solution of the corresponding integral equation system. This solution is approximated by using the variational method in conjunction with a judicious choice of trial function which correctly models the fluid behaviour at the free surface and near the joins of the varying topography with the constant-depth sections, which may not be smooth. The numerical results are remarkably accurate, with just a two-term trial function giving three decimal places of accuracy in the reflection and transmission coefficients in most cases, whilst increasing the number of terms in the trial function results in rapid convergence. The method is applied to a range of examples.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-05-25
    Description: The behaviour of water waves over periodic beds is considered in a two-dimensional context and using linear theory. Three cases are investigated: the scattering of waves by a finite section of periodic topography; the Bloch problem for infinite periodic topography; and sloshing motions over periodic topography confined between vertical boundaries. Connections are established between these problems. A transfer matrix method incorporating evanescent modes is developed for the scattering problem, which reduces the computation to that required for a single period, without compromising full linear theory. The problem of the existence of Bloch waves can also be posed on a single period, leading to a close relationship between it and the scattering problem. Sloshing motions over periodic beds, which may be regarded as special cases of the Bloch problem, are also found to have a significant connection with wave scattering. Integral equations methods allied to the Galerkin approximation are used to resolve the three problems numerically. In particular, the full linear solution for Bragg resonance is presented, allowing the accuracy of existing approximations to this phenomenon to be assessed. The selection of results given illustrates the main features of the work.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-06-25
    Description: An investigation is carried out into the effect on wave propagation of an ice sheet of varying thickness floating on water of varying depth, in three dimensions. By deriving a variational principle equivalent to the governing equations of linear theory and invoking the mild-slope approximation in respect of the ice thickness and water depth variations, a simplified form of the problem is obtained from which the vertical coordinate is absent. Two situations are considered: the scattering of flexural-gravity waves by variations in the thickness of an infinite ice sheet and by depth variations; and the scattering of free-surface gravity waves by an ice sheet of finite extent and varying thickness, again incorporating arbitrary topography. Numerical methods are devised for the two-dimensional versions of these problems and a selection of results is presented. The variational approach that is developed can be used to implement more sophisticated approximations and is capable of producing the solution of full linear problems by taking a large enough basis in the Rayleigh-Ritz method. It is also applicable to other situations that involve wave scattering by a floating elastic sheet. © 2004 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-08-14
    Description: A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-05-10
    Description: The scattering and trapping of water waves by three-dimensional submerged topography, infinite and periodic in one horizontal coordinate and of finite extent in the other, is considered under the assumptions of linearized theory. The mild-slope approximation is used to reduce the governing boundary value problem to one involving a form of the Helmholtz equation in which the coefficient depends on the topography and is therefore spatially varying. Two problems are considered: The scattering by the topography of parallel-crested obliquely incident waves and the propagation of trapping modes along the periodic topography. Both problems are formulated in terms of 'domain' integral equations which are solved numerically. Trapped waves are found to exist over any periodic topography which is 'sufficiently' elevated above the unperturbed bed level. In particular, every periodic topography wholly elevated above that level supports trapped waves. Fundamental differences are shown to exist between these trapped waves and the analogous Rayleigh-Bloch waves which exist on periodic gratings in acoustic theory. Results computed for the scattering problem show that, remarkably, there exist zeros of transmission at discrete wavenumbers for any periodic bed elevation and for all incident wave angles. One implication of this property is that total reflection of an incident wave of a particular frequency will occur in a channel with a single symmetric elevation on the bed. The zeros of transmission in the scattering problem are shown to be related to the presence of a 'nearly trapped' mode in the corresponding homogeneous problem. The scattering of waves by multiple rows of periodic topography is also considered and it is shown how Bragg resonance - well-established in scattering of waves by two-dimensional ripple beds - occurs in modes other than the input mode.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Cambridge : Cambridge University Press
    ISSN: 0007-0874
    Source: Cambridge Journals Digital Archives
    Topics: History , Natural Sciences in General
    Notes: Viewed in the light of the discussions of scientific lecturing in eighteenth-century London contained in this issue, the case of medicine may be said to be both more of the same but also something different.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0007-0874
    Source: Cambridge Journals Digital Archives
    Topics: History , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0007-0874
    Source: Cambridge Journals Digital Archives
    Topics: History , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Cambridge : Cambridge University Press
    ISSN: 0007-0874
    Source: Cambridge Journals Digital Archives
    Topics: History , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...