ISSN:
1089-7690

Source:
AIP Digital Archive

Topics:
Physics
,
Chemistry and Pharmacology

Notes:
Thirteen new rotational transitions of H2O+ in the (0,0,0) level of the X˜ 2B1 state have been measured in the wavenumber region between 80 and 200 cm−1 (50 and 120 μm) by far-infrared laser magnetic resonance (LMR) spectroscopy. LMR data measured previously between 25 and 90 cm−1 (110 and 400 μm), as well as optical and infrared combination differences, have been combined with the new LMR data in a weighted least-squares analysis using an A-reduced expression of the rotational-fine structure Hamiltonian. Thirty-two molecular constants were simultaneously determined, some sextic centrifugal distortion parameters and some quartic and sextic spin-rotation parameters for the first time. From this improved set of molecular parameters, very accurate calculations of rotational term values and zero-field predictions of the 111–000 transition, including hyperfine structure, have been performed. Moreover, the electronic g-tensors and the hyperfine coupling constants are consistent with ab initio calculations which had been carried out for these constants. © 1998 American Institute of Physics.

Type of Medium:
Electronic Resource

Permalink