ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report the first study, to the best of our knowledge, of the nonresonant third-order optical nonlinearity of quantum-confined CdS clusters using third harmonic generation from 1.91 to 0.64 μm. We observe that the nonlinearity increases with the increase in the cluster size. The intrinsic, nonresonant χ(3)CdS for ∼30, ∼15 A(ring) thiophenolate-capped CdS clusters and [Cd10S4(SPh)16]−4 molecular clusters are 3.3×10−10, 2.5×10−11, 4.7×10−12 esu, respectively. To utilize this large nonresonant nonlinearity it is necessary to incorporate these clusters into a sample in high concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We studied the optical transient bleaching of ∼40 A(ring), ammonia-passivated CdS clusters in a polymer with nanosecond and picosecond pump-probe techniques. The transient bleaching spectra behave differently in different time regimes. Within the 30-ps pump laser pulse width, we tentatively attribute the bleaching to the exciton-exciton interaction, and the magnitude can be enhanced by surface passivation. On time scales of tens of picoseconds and longer following the pump pulse, when only trapped electron-hole pairs remain from the pump excitation, the bleaching is due to the interaction between such a trapped electron-hole pair and a bound exciton produced by the probe light. Experimentally we determined that roughly one trapped electron-hole pair can bleach the excitonic absorption of the whole CdS cluster. We developed a theoretical model which considers the effects of the trapped electron-hole pair on the energy of the exciton transition and its oscillator strength. We found that, when a trapped electron and hole are present, the lowest exciton absorption is red-shifted from the original exciton absorption, and this transition has a weak oscillator strength, which explains the observed efficient bleaching. The model also predicts that a trapped electron is more efficient than a trapped hole for bleaching the excitonic absorption of CdS clusters in the size regime considered here. This is confirmed by pulse radiolysis results. Finally, we discuss the possible effects of charged surface defects on the linear absorption spectra of semiconductor clusters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 3435-3441 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report a picosecond pump–probe study of 55 A(ring) cadmium sulfide microcrystallites embedded in polymer films. Large negative absorbance changes at wavelengths corresponding to energies near the band gap are observed. This absorption bleaching and the associated changes in refractive index are mainly responsible for the large nonlinearity observed in degenerate four-wave mixing experiments. Based on photoluminescence data, the known electron-trapping cross section of defects, and these pump–probe experiments, we show that the conventional carrier density-dependent band-filling mechanism cannot account for the data, and the absorption bleaching is due to the saturation of the excitonic transition. We further show that the phase-space filling and exchange effects from exciton–exciton and exciton-free carrier interactions fail to account for the observed data. Instead, we propose that the exciton-trapped carrier interaction is mainly responsible for the observed bleaching of the excitonic absorption. This interaction is unique for small semiconductor clusters since the presence of a high density of defects (most likely on the surfaces) causes the extremely rapid trapping of free carriers. According to this model, the recovery time of the absorption bleaching is determined by the trapped-carrier relaxation time, which is sensitive to the fabrication methods and can be controlled by surface chemistry. Our study also demonstrates that one needs to understand the effects of surfaces and control the surface chemistry before the important question of size effects on the nonlinear optical properties can be addressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 61 (1992), S. 124-126 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using variable-angle ellipsometry and normal incidence reflection/transmission optical techniques we have measured the dielectric function ε(ω) at room temperature for solid C70 films over the photon energy range 0.5≤E≤5.3 eV. The onset of absorption across the highest-occupied-molecular-orbit (HOMO)–lowest-unoccupied-molecular-orbit (LUMO) gap is measured to be 1.25 eV. Furthermore, structure in the interband absorption at 2.41, 3.10, 3.50, and 4.45 eV is observed. The refractive index at zero frequency is estimated to be n(0)=1.94 as compared to the value n(0)=1.90, which we obtained for solid C60 from our previous study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-07
    Description: Nanopores can serve as a molecule channel for transport of fluid, where water diffusion differs remarkably from that of simple particles. Hydrogen bonds play an essential role in the diffusion anomaly. Detailed investigations are carried out on the systems of rigid (6, 6), (7, 7), (8, 8), (9, 9), and (10, 10) armchair carbon nanotubes, solvated with Lennard-Jones water fluids. The role of hydrogen bonds is examined by diffusivity statistics and animation snapshots. It is found that in small (6,6) CNT, hydrogen bonds tend to aggregate water into a wire and lead to rapid collective drift. Confinement can stabilize the hydrogen bond of water molecules and enhance its lifetime. In relatively smaller CNTs, the diffusion mechanism could be altered by the temperature. Moreover, in larger nanotubes hydrogen bonding network allows the water to form regional concentrated clusters. This allows water fluid in extremely low density exhibit rather slow self-diffusion motion. This fundamental study attempts to provide insights in understanding nanoscale delivery system in aqueous solution.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-28
    Description: To explore potential applications, MgNb 2 O 6 single crystal grown previously by optical floating zone method was used as a prototype for optical phonon behavior investigation. Polarized Raman spectra obtained in adequate parallel and crossed polarization were presented. All the obtained Raman modes were identified for the MgNb 2 O 6 , in good agreement with previous theory analysis. The selection rules of Raman for the columbite group were validated. Additionally, in-site temperature-dependent Raman spectra of MgNb 2 O 6 were also investigated in the range from 83 to 803 K. The strong four A g phonon modes all exhibits red shift with the temperature increasing. But thermal expansion of spectra is sectional linear with inflection points at about 373 K. And the absolute value of dω/dT at high temperature is higher than the one at lower temperature.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-07
    Description: We report the demonstration of an InGaAs/GaAs quantum well (QW) broadband stimulated emission laser with a structure that integrated a GaAs tunnel junction with two QW active regions. The laser exhibits ultrabroad lasing spectral coverage of ∼51 nm at a center wavelength of 1060 nm with a total emission power of 790 mW, corresponding to a high average spectral power density of 15.5 mW/nm, under pulsed current conditions. Compared to traditional lasers, this laser with an asymmetric separate-confinement heterostructure shows broader lasing bandwidth and higher spectral power density.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-21
    Description: Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs) showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in {Li [In(1,3 − BDC) 2 ]} n and enhancement of the H 2 uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-06
    Description: The Cu-doping effect on the lattice and magnetic properties in Mn 3 Ni 1−x Cu x N (x = 0, 0.3, 0.5, 0.7, 1.0) was extensively investigated. We observed that the Cu-doping at the Ni site complicated the magnetic ground states, which induced the competition of antiferromagnetic and ferromagnetic interactions. Spin-glass-like behavior, arising from possible site-randomness and competing interactions of magnetism, was observed in compounds with x = 0.3, 0.5, and 0.7, and typically discussed by means of the measurement of ac magnetic susceptibility for x = 0.7. The negative thermal expansion (NTE) behavior, due to the magnetic ordering transition, was observed in Mn 3 Ni 1−x Cu x N compounds using variable temperature x-ray diffraction. It reveals that the introduction of Cu effectively broadens the temperature range displaying negative thermal expansion. The relationship between the local lattice distortion and the competing magnetic ground states might play an important role in broadening the NTE temperature range in this antiperovskite compound.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-24
    Description: The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...