ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-03-22
    Description: The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plath, Kathrin -- Fang, Jia -- Mlynarczyk-Evans, Susanna K -- Cao, Ru -- Worringer, Kathleen A -- Wang, Hengbin -- de la Cruz, Cecile C -- Otte, Arie P -- Panning, Barbara -- Zhang, Yi -- New York, N.Y. -- Science. 2003 Apr 4;300(5616):131-5. Epub 2003 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism/*physiology ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; *Dosage Compensation, Genetic ; Female ; Fluorescent Antibody Technique ; Genomic Imprinting ; HeLa Cells ; Histones/*metabolism ; Humans ; In Situ Hybridization, Fluorescence ; Lysine/metabolism ; Male ; Methylation ; Mice ; Mutation ; Polycomb Repressive Complex 2 ; RNA, Long Noncoding ; RNA, Untranslated/genetics/metabolism ; Repressor Proteins/metabolism ; Stem Cells/metabolism/*physiology ; Transgenes ; Trophoblasts/*physiology ; X Chromosome/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-08-15
    Description: Posttranslational protein translocation across the endoplasmic reticulum membrane of yeast requires a seven-component transmembrane complex (the Sec complex) in collaboration with the lumenal Kar2 protein (Kar2p). A translocation substrate was initially bound to the cytosolic face of the purified Sec complex in a signal-sequence-dependent but Kar2p- and nucleotide-independent manner. In a subsequent reaction, in which Kar2p interacted with the lumenal face of the Sec complex and hydrolyzed adenosine triphosphate, the substrate moved through a channel formed by the Sec complex and was released at the lumenal end. Movement through the channel occurred in detergent solution in the absence of a lipid bilayer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matlack, K E -- Plath, K -- Misselwitz, B -- Rapoport, T A -- GM54238-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 15;277(5328):938-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9252322" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Biological Transport ; Cross-Linking Reagents ; Cytosol/metabolism ; Detergents ; Digitonin ; Endoplasmic Reticulum/metabolism ; Fungal Proteins/*metabolism ; HSP70 Heat-Shock Proteins/*metabolism ; *Heat-Shock Proteins ; Lipid Bilayers ; Liposomes/metabolism ; Membrane Proteins/*metabolism ; *Membrane Transport Proteins ; Protein Precursors/*metabolism ; Protein Sorting Signals/metabolism ; Proteolipids/metabolism ; RNA, Transfer/metabolism ; *Saccharomyces cerevisiae Proteins ; Solubility ; Succinimides
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-06
    Description: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engreitz, Jesse M -- Pandya-Jones, Amy -- McDonel, Patrick -- Shishkin, Alexander -- Sirokman, Klara -- Surka, Christine -- Kadri, Sabah -- Xing, Jeffrey -- Goren, Alon -- Lander, Eric S -- Plath, Kathrin -- Guttman, Mitchell -- 1F32GM103139-01/GM/NIGMS NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- P01 GM099134/GM/NIGMS NIH HHS/ -- P01GM099134/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin/chemistry/metabolism ; Female ; *Genome ; Male ; Mice ; Models, Genetic ; RNA, Long Noncoding/chemistry/*metabolism ; Transcription, Genetic ; X Chromosome/*metabolism/ultrastructure ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-03-20
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-04
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...