ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-03-07
    Description: The spindle checkpoint regulates the cell division cycle by keeping cells with defective spindles from leaving mitosis. In the two-hybrid system, three proteins that are components of the checkpoint, Mad1, Mad2, and Mad3, were shown to interact with Cdc20, a protein required for exit from mitosis. Mad2 and Mad3 coprecipitated with Cdc20 at all stages of the cell cycle. The binding of Mad2 depended on Mad1 and that of Mad3 on Mad1 and Mad2. Overexpression of Cdc20 allowed cells with a depolymerized spindle or damaged DNA to leave mitosis but did not overcome the arrest caused by unreplicated DNA. Mutants in Cdc20 that were resistant to the spindle checkpoint no longer bound Mad proteins, suggesting that Cdc20 is the target of the spindle checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, L H -- Lau, L F -- Smith, D L -- Mistrot, C A -- Hardwick, K G -- Hwang, E S -- Amon, A -- Murray, A W -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1041-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California at San Francisco, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Cadherins ; Calcium-Binding Proteins/metabolism ; *Carrier Proteins ; Cdc20 Proteins ; Cdh1 Proteins ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Damage ; DNA Replication ; Fungal Proteins/chemistry/*metabolism ; Ligases/metabolism ; Mad2 Proteins ; *Mitosis ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/metabolism ; Phosphoproteins/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/*cytology/*metabolism ; *Saccharomyces cerevisiae Proteins ; Spindle Apparatus/*metabolism ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-01-22
    Description: Cell lineage specification depends on both gene activation and gene silencing, and in the differentiation of T helper progenitors to Th1 or Th2 effector cells, this requires the action of two opposing transcription factors, T-bet and GATA-3. T-bet is essential for the development of Th1 cells, and GATA-3 performs an equivalent role in Th2 development. We report that T-bet represses Th2 lineage commitment through tyrosine kinase-mediated interaction between the two transcription factors that interferes with the binding of GATA-3 to its target DNA. These results provide a novel function for tyrosine phosphorylation of a transcription factor in specifying alternate fates of a common progenitor cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Eun Sook -- Szabo, Susanne J -- Schwartzberg, Pamela L -- Glimcher, Laurie H -- AI48126/AI/NIAID NIH HHS/ -- AI56296/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):430-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cytokines/pharmacology/physiology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; GATA3 Transcription Factor ; Interleukin-5/genetics ; Mice ; Mice, Inbred BALB C ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; T-Box Domain Proteins ; T-Lymphocytes, Helper-Inducer/cytology/*physiology ; Th1 Cells/cytology/physiology ; Th2 Cells/cytology/*physiology ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-08-16
    Description: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hong, Jeong-Ho -- Hwang, Eun Sook -- McManus, Michael T -- Amsterdam, Adam -- Tian, Yu -- Kalmukova, Ralitsa -- Mueller, Elisabetta -- Benjamin, Thomas -- Spiegelman, Bruce M -- Sharp, Phillip A -- Hopkins, Nancy -- Yaffe, Michael B -- CA042063/CA/NCI NIH HHS/ -- GM60594/GM/NIGMS NIH HHS/ -- GM68762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1074-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E18-580, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099986" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; Animals ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/pharmacology ; Cell Differentiation ; Cell Line ; Core Binding Factor Alpha 1 Subunit ; Gene Expression Regulation, Developmental ; Humans ; Mesenchymal Stromal Cells/*cytology/physiology ; Mice ; Neoplasm Proteins/metabolism ; Oligonucleotides, Antisense ; Osteoblasts/*cytology ; Osteocalcin/genetics ; Osteogenesis ; PPAR gamma/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*physiology ; RNA, Small Interfering ; Transcription Factors/chemistry/genetics/metabolism/*physiology ; Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/pharmacology ; Zebrafish ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-08
    Description: Emerging evidence indicates that NADPH oxidase (NOX) and its reactive oxygen species (ROS) products modulate a variety of cellular events, including proliferation, differentiation, and apoptosis. In this study, we investigated the functions of NOX2 and ROS in immune modulation using NOX2 knockout (KO) mice. Interestingly, NOX2 KO mice spontaneously developed arthritis with onset at 6–7 wk of age and high incidence (60%) at 15–18 wk of age. Arthritis severity in NOX2 KO mice was proportionally increased with age and higher in females than in males. Bone destruction was confirmed by microcomputed tomography scanning and histological analyses of joints. Inflammatory factors, including TNF-α, IL-1β, and RANKL, and serum level of anti–type II collagen IgG were significantly increased in NOX2 KO mice. In addition, NOX2 deficiency perturbed the immune system upon aging. NOX2 KO mice demonstrated preferred development of CD11b+Gr-1+ myeloid cells with profound production of proinflammatory cytokines and augmented expression of IL-17 through the activation of STAT3 and RORγt in vivo. NOX2 deficiency increased differentiation of effector Th cells in vitro and decreased CD25+FoxP3+ Treg cells both in vitro and in vivo. Furthermore, adoptive transfer of NOX2-deficient CD4+ T cells into RAG KO mice increased arthritic inflammation compared with WT cells. These results demonstrated that NOX2 deficiency affected the development of CD11b+ myeloid cells and Th17/Treg cells, and thus promoted inflammatory cytokine production and inflammatory arthritis development, strongly supporting a crucial role for ROS generation in the modulation of Th17/Treg cell development and its related inflammatory immune response upon aging.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-01-21
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-22
    Description: Retrospective clinical studies have used immune-based biomarkers, alone or in combination, to predict survival outcomes for women with breast cancer (BC); however, the limitations inherent to immunohistochemical analyses prevent comprehensive descriptions of leukocytic infiltrates, as well as evaluation of the functional state of leukocytes in BC stroma. To more fully evaluate this complexity, and to gain insight into immune responses after chemotherapy (CTX), we prospectively evaluated tumor and nonadjacent normal breast tissue from women with BC, who either had or had not received neoadjuvant CTX before surgery. Tissues were evaluated by polychromatic flow cytometry in combination with confocal immunofluorescence and immunohistochemical analysis of tissue sections. These studies revealed that activated T lymphocytes predominate in tumor tissue, whereas myeloid lineage cells are more prominant in “normal” breast tissue. Notably, residual tumors from an unselected group of BC patients treated with neoadjuvant CTX contained increased percentages of infiltrating myeloid cells, accompanied by an increased CD8/CD4 T-cell ratio and higher numbers of granzyme B-expressing cells, compared with tumors removed from patients treated primarily by surgery alone. These data provide an initial evaluation of differences in the immune microenvironment of BC compared with nonadjacent normal tissue and reveal the degree to which CTX may alter the complexity and presence of selective subsets of immune cells in tumors previously treated in the neoadjuvant setting.
    Keywords: Breast Cancer Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-10-26
    Description: The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...