ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-01
    Description: Multichannel seismic reflection images across the transition between the east Alborán and the Algero-Balearic basins show how crustal thickness decreases from about 5 s two-way traveltime (TWTT, ∼15 km thick) in the west (east Alborán basin) to ∼2 s TWTT typical of oceanic crust (∼6 km thick) in the east (Algero-Balearic basin). We have differentiated three different crustal domains in this transition, mainly on the basis of crustal thickness and seismic signature. Boundaries between the three crustal domains are transitional and lack evidence for major faults. Tilted blocks related to extension are very scarce and all sampled basement outcrops are volcanic, suggesting a strong relationship between magmatism and crustal structure. Stratigraphic correlation of lithoseismic units with sedimentary units of southeastern Betic basins indicates that sediments onlap igneous basement approximately at 12 Ma in the eastern area and at 8 Ma in the western area. Linking seismic crustal structure with magmatic geochemical evidence suggests that the three differentiated crustal domains may represent, from west to east, thin continental crust modified by arc magmatism, magmatic-arc crust, and oceanic crust. Middle to late Miocene arc and oceanic crust formation in the east Alborán and Algero-Balearic basins, respectively, occurred during westward migration of the Gibraltar accretionary wedge and shortening in the Betic-Rif foreland basins. Arc magmatism and associated backarc oceanic crust formation were related to early to middle Miocene subduction and rollback of the Flysch Trough oceanic basement. Subduction of this narrow slab beneath the Alborán basin was coeval with collision of the Alborán domain with the Iberian and African passive margins and subsequent subcontinental-lithosphere edge delamination along the Betic-Rif margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-07
    Description: Quantification of fluid fluxes from cold seeps depends on accurate estimates of the spatial validity of flux measurements. These estimates are strongly influenced by the choice of geoacoustic mapping tools. Multibeam bathymetry, side-scan sonar, and Chirp subbottom profiler data of several mound-shaped cold seeps offshore central Costa Rica show great variety in morphology and structure although the features are only a few kilometers apart. Mound 11 (a 35 m high and 1000 m in diameter structure), situated in the SE of the study area, has an irregular morphology but a smooth surface on side-scan sonar data, while mound 12 (30 m high, 600 m across) is a cone of more regular outline but with a rough surface, and mound Grillo (5 m high, 500 m across) shows the same rough surface as mound 12 but without relief. Video observations and sediment cores indicate that the structures are formed by the precipitation of authigenic carbonates and indications for extensive mud extrusion are absent, except for one possible mudflow at mound 11. Different sonar frequencies result in variable estimates of the extent of these mounds with low frequencies suggesting much wider cold seeps, consequently overestimating fluid fluxes. The absence of mud volcanism compared to accretionary prisms where mud volcanism occurs is related to different tectonic styles: strong sediment overpressure and thrust faulting in typical accretionary prisms can generate mud volcanism, while subduction erosion and normal faulting (extension) of the overriding plate at the Costa Rican margin result in fluid venting driven by only slight fluid overpressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-28
    Description: Water transported by slabs into the mantle at subduction zones plays key roles in tectonics, magmatism, fluid and volatiles fluxes, and most likely in the chemical evolution of the Earth's oceans and mantle. Yet, incorporation of water into oceanic plates before subduction is a poorly understood process. Several studies suggest that plates may acquire most water at subduction trenches because the ocean crust and uppermost mantle there are intensely faulted caused by bending and/or slab pull, and display anomalously low seismic velocities. The low velocities are interpreted to arise from a combination of fluid-filled fractures associated to normal faulting and mineral transformation by hydration. Mantle hydration by transformation of nominally dry peridotite to water-rich serpentinite could potentially create the largest fluid reservoir in slabs and is therefore the most relevant for the transport of water in the deep mantle. The depth of fracturing by normal-fault earthquakes is usually not well constrained, but could potentially create deep percolation paths for water that might hydrate up to tens of kilometers into the mantle, restrained only by serpentine stability. Yet, interpretation of deep intraplate mineral alteration remains speculative because active-source seismic experiments have sampled only the uppermost few kilometers of mantle, leaving the depth-extent of anomalous velocities and their relation to faulting unconstrained. Here we use a joint inversion of active-source seismic data, and both local and regional earthquakes to map the three dimensional distribution of anomalous velocities under a seismic network deployed at the trench seafloor. We found that anomalous velocities are restrained to the depth of normal-fault micro-earthquake activity recorded in the network, and are considerably shallower than either the rupture depth of teleseismic, normal-fault earthquakes, or the limit of serpentine stability. Extensional micro-earthquakes indicate that each fault in the region slips every 2–3 months which may facilitate regular water percolation. Deeper, teleseismic earthquakes are comparatively infrequent, and possibly do not cause significant fracturing that remains open long enough to promote alteration detectable with our seismic study. Our results show that the stability field of serpentine does not constrain the depth of potential mantle hydration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-27
    Description: We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ~150 km. At this depth, the mantle resistivity decreases to values of ~100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-28
    Description: We present 2-D seismic velocity models and coincident multichannel seismic reflection images of the overriding plate and the inter-plate boundary of the Nicaragua convergent margin along two wide-angle seismic profiles parallel and normal to the trench acquired in the rupture area of the 1992 tsunami earthquake. The trench-perpendicular profile runs over a seamount subducting under the margin slope, at the location where seismological observations predict large coseismic slip. Along this profile, the igneous basement shows increasing velocity both with depth and away from the trench, reflecting a progressive decrease in upper-plate rock degree of fracturing. Upper mantle-like velocities are obtained at approximate to 10 km depth beneath the fore-arc Sandino basin, indicating a shallow mantle wedge. A mismatch of the inter-plate reflector in the velocity models and along coincident multichannel seismic profiles under the slope is best explained by approximate to 15% velocity anisotropy, probably caused by subvertical open fractures that may be related to fluid paths feeding known seafloor seepage sites. The presence of a shallow, partially serpentinized mantle wedge, and the fracture-related anisotropy are supported by gravity analysis of velocity-derived density models. The downdip limit of inter-plate seismicity occurs near the tip of the inferred mantle wedge, suggesting that seismicity could be controlled by the presence of serpentinite group minerals at the fault gouge. Near the trench, the inferred local increase of normal stress produced by the subducting seamount in the plate boundary may have made this fault segment unstable during earthquake rupture, which could explain its tsunamigenic character.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-13
    Description: Active ridge propagation frequently occurs along spreading ridges and profoundly affects ridge crest segmentation over time. The mechanisms controlling ridge propagation, however, are poorly understood. At the slow spreading Mid-Atlantic Ridge at 21.5°N a seismic refraction and wide-angle reflection profile surveyed the crustal structure along a segment controlled by rapid ridge propagation. Tomographic traveltime inversion of seismic data suggests that the crustal structure along the ridge axis is controlled by melt supply; thus, crust is thickest, 8 km, at the domed segment center and decreases in thickness toward both segment ends. However, thicker crust is formed in the direction of ridge propagation, suggesting that melt is preferentially transferred toward the propagating ridge tip. Further, while seismic layer 2 remains constant along axis, seismic layer 3 shows profound changes in thickness, governing variations in total crustal thickness. This feature supports mantle upwelling at the segment center. Thus, fluid basaltic melt is redistributed easily laterally, while more viscose gabbroic melt tends to crystallize and accrete nearer to the locus of melt supply. The onset of propagation seems to have coincided with the formation of thicker crust, suggesting that propagation initiation might be due to changes in the melt supply. After a rapid initiation a continuous process of propagation was established. The propagation rate seems to be controlled by the amount of magma that reaches the segment ends. The strength of upwelling may govern the evolution of ridge segments and hence ultimately controls the propagation length.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-11-07
    Description: The thermal structure of convergent margins provides information related to the tectonics, geodynamics, metamorphism, and fluid flow of active plate boundaries. We report 176 heat flow measurements made with a violin bow style probe across the Costa Rican margin at the Middle America Trench. The probe measurements are collocated with seismic reflection lines. These seismic reflection lines show widespread distribution of bottom‐simulating reflectors (BSRs). To extend the spatial coverage of heat flow measurements we estimate heat flow from the depth of BSRs. Comparisons between probe measurements and BSR‐derived estimates of heat flow are generally within 10% and improve with distance landward of the deformation front. Together, these determinations provide new information on the thermal regime of this margin. Consistent with previous studies, the margin associated with the northern Nicoya Peninsula is remarkably cool. We define better the southern boundary of the cool region. The northern extent of the cool region remains poorly determined. A regional trend of decreasing heat flow landward of the deformation front is apparent, consistent with the downward advection of heat by the subducting Cocos Plate. High wave number variability at a scale of 5–10 km is significantly greater than the measurement uncertainty and is greater south of the northern Nicoya Peninsula. These heat flow anomalies vary between approximately 20 and 60 mW m−2 and are most likely due to localized fluid flow through mounds and faults on the margin. Simple one‐dimensional models show that these anomalies are consistent with flow rates of 7–15 mm yr−1. Across the margin toe variability is significant and likely due to fluid flow through deformation structures associated with the frontal sedimentary prism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-28
    Description: We investigate potential relations between variations in seafloor relief and age of the incoming plate and interplate seismicity. Westward from Osa Peninsula in Costa Rica, a major change in the character of the incoming Cocos Plate is displayed by abrupt lateral variations in seafloor depth and thermal structure. Here a Mw 6.4 thrust earthquake was followed by three aftershock clusters in June 2002. Initial relocations indicate that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of OBH and land stations ∼80 km to the northwest were deployed. By adding readings from permanent local stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocate this catalog using a nonlinear probabilistic approach within both, a 1-D and a 3-D P wave velocity models. The main shock occurred ∼25 km from the trench and probably along the plate interface at 5–10 km depth. We analyze teleseismic data to further constrain the rupture process of the main shock. The best depth estimates indicate that most of the seismic energy was radiated at shallow depth below the continental slope, supporting the nucleation of the Osa earthquake at ∼6 km depth. The location and depth coincide with the plate boundary imaged in prestack depth-migrated reflection lines shot near the nucleation area. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interplate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU | Wiley
    In:  Tectonics, 37 (10). pp. 3352-3377.
    Publication Date: 2019-08-05
    Description: The Alboran Basin in the westernmost Mediterranean hosts the orogenic boundary between the Iberian and African plates. Although numerous geophysical studies of crustal structure onshore Iberia have been carried out during the last decade, the crustal structure of the Alboran Basin has comparatively been poorly studied. We analyze crustal‐scale images of a grid of new and reprocessed multichannel seismic profiles showing the tectonic structure and variations in the reflective character of the crust of the basin. The nature of the distinct domains has been ground‐truthed using available basement samples from drilling and dredging. Our results reveal four different crustal types ‐domains‐ of the Alboran Basin: a) a thin continental crust underneath the West Alboran and Malaga basins, which transitions to b) a magmatic arc crust in the central part of the Alboran Sea and the East Alboran Basin, c) the North‐African continental crust containing the Pytheas and Habibas sub‐basins, and d) the oceanic crust in the transition towards the Algero‐Balearic Basin. The Alboran Basin crust is configured in a fore‐arc basin (West Alboran and Malaga basins), a magmatic arc (central and East Alboran), and a back‐arc system in the easternmost part of the East Alboran Basin and mainly Algero‐Balearic Basin. The North‐African continental crust is influenced by arc‐related magmatism along its edge, and was probably affected by strike‐slip tectonics during westward migration of the Miocene subduction system. The distribution of active tectonic structures in the current compressional setting generally corresponds to boundaries between domains, possibly representing inherited lithospheric‐scale weak structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-06
    Description: Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (∼8–4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (∼10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15–17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°–50° and that the rifted domain is horizontally stretched by a factor of β ∼ 1.3 (∼8–10 mm/a). The crust has been thinned from ∼24 to ∼17 km indicating a similar amount of extension (∼30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half-graben formations and distributed homogeneous crustal thinning are a common feature during rift initiation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...