ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-17
    Description: The high-resolution model of the wind-driven and thermohaline circulation in the Atlantic Ocean developed in recent years as a “community modeling effort” for the World Ocean Circulation Experiment is examined for the temporal and spatial structure of the deep equatorial current field and its effect on the spreading of North Atlantic Deep Water (NADW). Under seasonally varying wind forcing, the model reveals a system of basin-wide zonal currents of O(5 cm s−1), alternating east-west, and oscillating at an annual period. The current fluctuations are induced by the seasonal cycle of the wind stress in the equatorial Atlantic and show characteristics of long equatorial Rossby waves with westward phase propagation of about 15 cm s−1. The mean flow in the deep western tropical Atlantic is governed by a deep western boundary current (DWBC) with core velocities of more than 10 cm s−1. Only a small fraction of the DWBC branches off at the equator, with correspondingly low mean eastward currents of only about 1 cm s−1. Despite this weak advection along the equator, a well-developed salinity tongue is observed in the model, which is reminiscent of observed property distributions at the upper NADW level. The model evaluation indicates the salinity pattern to be a result of a balance between mean zonal advection and meridional diffusion of salt. The presence of the zonal current oscillations appears to have no significance for the existence of the salinity tongue.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-20
    Description: Vast amounts of methane hydrates are potentially stored in sediments along the continental margins, owing their stability to low temperature – high pressure conditions. Global warming could destabilize these hydrates and cause a release of methane (CH 4) into the water column and possibly the atmosphere. Since the Arctic has and will be warmed considerably, Arctic bottom water temperatures and their future evolution projected by a climate model were analyzed. The resulting warming is spatially inhomogeneous, with the strongest impact on shallow regions affected by Atlantic inflow. Within the next 100 years, the warming affects 25% of shallow and mid-depth regions containing methane hydrates. Release of methane from melting hydrates in these areas could enhance ocean acidification and oxygen depletion in the water column. The impact of methane release on global warming, however, would not be significant within the considered time span.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU
    In:  Geophysical Research Letters, 43 . pp. 4517-4523.
    Publication Date: 2019-02-26
    Description: The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to inter-annual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here, the multi-decadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 sec-2 decade-1. In the western Atlantic EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multi-decadal trends are close to zero. The non-uniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-25
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-25
    Description: A global ocean model with 1/12∘ horizontal resolution is used to assess the seasonal cycle of surface Eddy Kinetic Energy (EKE). The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the ocean. In all subtropical gyres of the Pacific and Atlantic, EKE peaks in summer down to a depth of ∼350 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies towards the surface.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-19
    Description: Analyses of sea surface height (SSH) records based on satellite altimeter data and hydrographic properties have suggested a considerable weakening of the North Atlantic subpolar gyre during the 1990s. Here we report hindcast simulations with high-resolution ocean circulation models that demonstrate a close correspondence of the SSH changes with the volume transport of the boundary current system in the Labrador Sea. The 1990s-decline, of about 15% of the long-term mean, appears as part of a decadal variability of the gyre transport driven by changes in both heat flux and wind stress associated with the North Atlantic Oscillation (NAO). The changes in the subpolar gyre, as manifested in the deep western boundary current off Labrador, reverberate in the strength of the meridional overturning circulation (MOC) in the subtropical North Atlantic, suggesting the potential of a subpolar transport index as an element of a MOC monitoring system.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Oceans, 96 (C4). pp. 6993-7004.
    Publication Date: 2018-01-25
    Description: A high-resolution general circulation model of the North Atlantic, first developed at the National Center for Atmospheric Research and then run at the Institut für Meereskunde in Kiel for two different wind climatologies and reduced vertical friction, is evaluated in the upper 500 m for the western tropical Atlantic, 5°S to 15°N. Although the general features of the vigorous seasonal circulation changes documented in previous studies and in the earlier high-resolution model of Philander and Pacanowski (1986a) are reproduced, there are some interesting differences. Lack of eastward penetration of the Equatorial Undercurrent (EUC) and a thermocline that is too diffuse are model deficiencies due to the constant vertical eddy diffusion coefficient. In the lower friction case the undercurrent partially surfaces in the west, causing an eastward surface current on the equator, which is not apparent in the earlier model studies. Further, the zonal currents, in the low-friction version, have high-velocity bands, resulting, e.g., in two separate current cores in the North Equatorial Countercurrent (NECC) region; and an eastward surface core just south of the equator, connected to the EUC. Particularly interesting are equatorward undercurrents along the western boundary, one of which has already been confirmed in recent measurements off French Guyana. In winter it connects with the EUC in the model, in summer with the NECC. A northward undercurrent in the model exists off Brazil, between 5° and 10°S, but that is already close to the southern boundary of the model domain. The annual mean throughflow from the southern hemisphere into the Caribbean along the western boundary is small in the model, and in particular, there is no enhanced throughflow in winter, when the cross-equatorial North Brazil Current transport is not taken up by the NECC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU
    In:  Geophysical Research Letters, 40 (6). pp. 1138-1143.
    Publication Date: 2017-06-20
    Description: Recent work suggests that changes of the Southern Hemisphere (SH) winds led to an increase in Agulhas leakage and a corresponding salinification of the Atlantic. Climate model projections for the 21st century predict a progressive southward migration and intensification of the SH westerlies. The potential effects on the ocean circulation of such an anthropogenic trend in wind stress are studied here with a high-resolution ocean model forced by a step-function change in SH wind stress that involves a 7% increase in westerlies strength and a 2° shift in the zero wind stress curl. The model simulation suggests a rapid dynamic adjustment of Agulhas leakage by 4.5 Sv, about a third of its original value, after a few years. The change in leakage is reflected in a concomitant change in the transport of the South Atlantic subtropical gyre, but leads only to a small increase in the Atlantic Meridional Overturning Circulation (AMOC) of O(1 Sv) after three decades. A main effect of the increasing inflow of Indian Ocean waters with potential long-term ramifications for the AMOC is the salinification and densification of upper-thermocline waters in the South Atlantic, which extends into the North Atlantic within the first three decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU
    In:  Geophysical Research Letters, 33 (L21S08).
    Publication Date: 2018-02-19
    Description: Direct observations at the Grand Banks have raised a quandary concerning the pathways of the lower branch of the meridional overturning circulation: In contrast to moored current meters that depict an intense, narrow Deep Western Boundary Current (DWBC), observations using different float types failed to show this continuous export path. Here, this issue is addressed by a Lagrangian analysis of synthetic particles in an eddy-resolving circulation model. Due to intense eddy activity around the Grand Banks, about 40% of the deep water in the DWBC is diverted into the interior, spreading southward along the western flank of the Mid-Atlantic Ridge or with the eddying flow field in the basin interior. Imposing constraints on the vertical displacements of particles similar to those experienced by observational floats further reduces their adherence to the DWBC, particularly near the southern tip of the Grand Banks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU
    In:  Geophysical Research Letters, 32 . L09602.
    Publication Date: 2018-03-28
    Description: Changes of the meridional overturning circulation (MOC) due to surface heat flux variability related to the North Atlantic Oscillation (NAO) are analyzed in various ocean models, i.e., eddying and non‐eddying cases. A prime signature of the forcing is variability of the winter‐time convection in the Labrador Sea. The associated changes in the strength of the MOC near the subpolar front (45°N) are closely related to the NAO‐index, leading MOC anomalies by about 2–3 years in both the eddying and non‐eddying simulation. Further south the speed of the meridional signal propagation depends on model resolution. With lower resolution (non‐eddying case, 4/3° resolution) the MOC signal propagates equatorward with a mean speed of about 0.6 cm/s, similar as spreading rates of passive tracer anomalies. Eddy‐permitting experiments (1/3°) show a significantly faster propagation, with speeds corresponding to boundary waves, thus leading to an almost in‐phase variation of the MOC transport over the subtropical to subpolar North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...