ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (61)
  • Springer  (61)
  • 1985-1989  (54)
  • 1900-1904  (7)
Collection
  • Articles  (61)
Years
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1986), S. 61-69 
    ISSN: 1432-2285
    Keywords: Branch cross-sectional area ; Leaf area ; Leaf biomass ; Picea abies ; Sapwood area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The relationship of leaf biomass and leaf area to the conductive area of stems and branches was investigated in Picea abies. A total of 30 trees were harvested to determine if these relationships were different in different crown zones and in trees growing with and without competition for light. Two methods were compared. In the first, data were accumulated from crown zones situated at the top of trees to the bottom; in the second, data were used from individual crown zones. The results indicated that the latter method is much more sensitive in detecting differences in the relationship of leaf biomass or leaf area to conductive area. The analysis also indicated that ratios such as leaf area/sapwood area are frequently size-dependent. This size-dependency can in some cases result in the differences being abscured, but more often leads to the false impression that the relationship between the variables changes. The relationship between leaf biomass and leaf area and conductive area of stems or branches was different in different crown zones and under different growth conditions. The slopes of these regressions appear to increase with decreasing transpirational demand and decrease with increasing hydraulic conductivity. The intercepts are probably related to the amount of identified sapwood actually involved in water conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1987), S. 219-224 
    ISSN: 1432-2285
    Keywords: Larix ; Heterosis ; Photosynthesis ; Stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Individual 33-year-old forest trees of the deciduous conifer speciesLarix decidua, Larix leptolepis andLarix decidua x leptolepis were investigated with respect to the phenomenon of stem heterosis in hybrid larch; the first part of this study compares the gas exchange responses of leaves. CO2 assimilation per leaf area was similar in the three larch species, but on a dry weight basis the nitrogen content of the needles and maximum CO2 assimilation rate (Amax) were slightly higher in the hybrid. This increase was accompanied by a higher protein content than in the Japanese and a lower specific leaf weight than in the European larch. All three species were similar in terms of the photosynthetic “nitrogen use” and stomatal conductance atA max. The similar slopes of the area-related steady-state responses of gas exchange against irradiance, evaporative demand and internal CO2 concentration led to similar rates of CO2 uptake under ambient conditions. The natural combinations and variability of the environmental factors also reduced the small dry weight-related difference inA max between hybrid larch and the parent species, such that all trees achieved similar daily carbon gains. Thus, the ecological significance of small interspecific differences in the metabolism of leaves has very little effect under the natural habitat conditions of a temperate climate. The second part of the study will investigate the effect of growth characteristics on the heterosis of hybrid larch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1987), S. 225-231 
    ISSN: 1432-2285
    Keywords: Larix ; Heterosis ; Growth ; Branching pattern ; Needle density
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Among 33-year-old forest trees ofLarix decidua, L. leptolepis andL. decidua x leptolepis, the hybrid possessed an above-ground biomass which was three times greater, although all larches displayed similar relative distributions of biomass. At a “relative growth rate” slightly lower than in the parent species, hybrid larch achieved twice the annual carbon gain, increment in stem length and above-ground production, and its foliage-related stem growth was higher than in European (L. decidua) but similar to Japanese (L. leptolepis) larch. A similar “relative growth efficiency” and foliage-related total above-ground production in all trees did reflect the similarity of photosynthetic capacity of the hybrid found at the leaf level. While the lengths of lateral twigs on hybrid branches were intermediate between the European larch with short, and the Japanese larch with large, twigs the hybrid possessed the longest branches with the highest needle biomass. This resulted in a crown structure of the hybrid crown similar to the Japanese larch together with a high needle density on branches as in the European larch. In total, the foliage biomass per crown length was about 30% higher in hybrid larch than in both of the parent species. Thus, the high carbon input for the stem heterosis was based on a “complementation principle” of advantageous parent features at the crown level. Similar slopes of foliage against sapwood area of stem and branches did not indicate a special need for a thick hybrid stem with respect to water transport.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Trees 2 (1988), S. 233-241 
    ISSN: 1432-2285
    Keywords: Larix ; Carbon uptake ; Respiration ; Carbon balances ; Water loss ; Sun and shade branches
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Shade needles of hybrid larch (Larix decidua × leptolepis) had the same rates of photosynthesis as sun needles per dry weight and nitrogen, and a similar leaf conductance under conditions of light saturation at ambient CO2 (Amax). However, on an area basis, Amax and specific leaf weight were lower in shade than in sun needles. Stomata of sun needles limited CO2 uptake at light saturation by about 20%, but under natural conditions of light in the shade crown, shade needles operated in a range of saturating internal CO2 without stomatal limitation of CO2 uptake. In both needle types, stomata responded similarly to changes in light, but shade needles were more sensitive to changes in vapor pressure deficit than sun needles. Despite a high photosynthetic capacity, the ambient light conditions reduced the mean daily (in summer) and annual carbon gain of shade needles to less than 50% of that in sun needles. In sun needles, the transpiration per carbon gain was about 220 mol mol−1 on an annual basis. The carbon budget of branches was determined from the photosynthetic rate, the needle biomass and respiration, the latter of which was (per growth and on a carbon basis) 1.6 mol mol−1 year−1 in branch and stem wood. In shade branches carbon gains exceeded carbon costs (growth + respiration) by only a factor of 1.6 compared with 3.5 in sun branches. The carbon balance of sun branches was 5 times higher per needle biomass of a branch or 9 times higher on a branch length basis than shade branches. The shade foliage (including the shaded near-stem sun foliage) only contributed approximately 23% to the total annual carbon gain of the tree.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Trees 3 (1989), S. 33-37 
    ISSN: 1432-2285
    Keywords: P/V curve ; Picea abies ; Aerial uptake ; Bark permeability ; Mass flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Uptake of water and magnesium chloride solution was investigated through the outer surface of twigs of Picea abies (L.) Karst. Water uptake was determined by using pressure/volume (P/V) curves of the twigs as a basis for calculation to avoid problems of superficial extraneous water. When water was sprayed on bark and needles of 3- to 7-year-old twigs at a xylem water potential of -1.00 MPa, they absorbed as much as 80 mm3 water in 200 min/g twig dry weight as the twig water potential recovered to -0.15 MPa. With fluorescent dyes, pathways for absorption of water and solutes through the twig bark were found, particularly through the radially orientated ray tissue. In addition to uptake by mass flow, magnesium could also diffuse along a concentration gradient from the twig surface into the xylem. In the field, the magnitude of these uptake processes would depend on the concentration of elements deposited by atmospheric precipitation, the concentration gradient between the plant surface and the xylem sap, the xylem water potential and the intensity and duration of each precipitation event.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Cell wall relaxation ; Cell elongation ; Glycine (growth control) ; Turgor pressure ; Water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new guillotine thermocouple psychrometer was used to make continuous measurements of water potential before and after the excision of elongating and mature regions of darkgrown soybean (Glycine max L. Merr.) stems. Transpiration could not occur, but growth took place during the measurement if the tissue was intact. Tests showed that the instrument measured the average water potential of the sampled tissue and responded rapidly to changes in water potential. By measuring tissue osmotic potential (Ψ s ), turgor pressure (Ψ p ) could be calculated. In the intact plant, Ψ s and Ψ p were essentially constant for the entire 22 h measurement, but Ψ s was lower and Ψ p higher in the elongating region than in the mature region. This caused the water potential in the elongating region to be lower than in the mature region. The mature tissue equilibrated with the water potential of the xylem. Therefore, the difference in water potential between mature and elongating tissue represented a difference between the xylem and the elongating region, reflecting a water potential gradient from the xylem to the epidermis that was involved in supplying water for elongation. When mature tissue was excised with the guillotine, Ψ s and Ψ p did not change. However, when elongating tissue was excised, water was absorbed from the xylem, whose water potential decreased. This collapsed the gradient and prevented further water uptake. Tissue Ψ p then decreased rapidly (5 min) by about 0.1 MPa in the elongating tissue. The Ψ p decreased because the cell walls relaxed as extension, caused by Ψ p , continued briefly without water uptake. The Ψ p decreased until the minimum for wall extension (Y) was reached, whereupon elongation ceased. This was followed by a slow further decrease in Y but no additional elongation. In elongating tissue excised with mature tissue attached, there was almost no effect on water potential or Ψ p for several hours. Nevertheless, growth was reduced immediately and continued at a decreasing rate. In this case, the mature tissue supplied water to the elongating tissue and the cell walls did not relax. Based on these measurements, a theory is presented for simultaneously evaluating the effects of water supply and water demand associated with growth. Because wall relaxation measured with the psychrometer provided a new method for determining Y and wall extensibility, all the factors required by the theory could be evaluated for the first time in a single sample. The analysis showed that water uptake and wall extension co-limited elongation in soybean stems under our conditions. This co-limitation explains why elongation responded immediately to a decrease in the water potential of the xylem and why excision with attached mature tissue caused an immediate decrease in growth rate without an immediate change in Ψ p
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Osmotic potential (cell) ; Peristomatal transpiration ; Tradescantia (water relations) ; Transpiration (peristomatal) ; Turgor (cell) ; Water potential (cell)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Maximal rates of CO2 assimilation of 8–11 μmol m-2 s-1 at ambient CO2 concentration were measured for Dendrosenecio keniodendron, D. brassica, Lobelia telekii and L. keniensis during the day in the natural habitat of these plants at 4,200 m elevation on Mt. Kenya. Even at these maximal rates, the CO2 uptake of all species was found to correspond to the linear portion of the CO2 response curve, with a calculated stomatal limitation for CO2 diffusion of 42%. Photosynthesis was strongly reduced at temperatures above 15° C. In contrast to this sensitivity to high temperatures, frozen leaves regained full photosynthetic capacity immediately after thawing. Stomata responded to dry air, but not to low leaf water potentials which occurred in cold leaves and at high transpiration rates. During the day reduced rates of CO2 uptake were associated with reduced light interception due to the erect posture of the rosette leaves and with high temperatures. Stomata closed at vapour pressure deficits which were comparable in magnitude to those characteristic of many lowland habitats (40 mPa Pa-1).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Picea abies ; Forest decline ; Xylem flow ; Whole tree transpiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The water relations of Picea abies in a healthy stand with green trees only and a declining stand with trees showing different stages of needle yellowing were investigated in northern Bavaria. The present study is based on observations of trees differing in their nutritional status but apparently green on both sites in order to identify changes in the response pattern which might be caused by atmospheric concentrations of air pollutants and could lead to the phenomenon of decline. Transpiration was measured as water flow through the hydroactive xylem using an equilibrium mass-flow measurement system. Total tree transpiration was monitored diurnally, from July 1985 until October 1985 at both sites. The relationship between transpiration and meteorological measurements indicated that transpiration was a linear function of the vapor pressure deficit. No differences in transpiration of green trees were observed between the two sites. Canopy transpiration was 57%–68% of total throughfall and 41%–54% of total rainfall. Due to this positive water balance, soil water potential at 10 and 20 cm depths remained close to-0.02 MPa (max.-0.09 MPa) for most of the summer. Soil water potential was correlated with the difference between the weekly precipitation and transpiration. No differences in the water relations of apparently healthy trees in the two P. abies stands were observed. It is concluded that differences between green trees at the two sites in terms of nutrient relations or growth rate cannot be explained by changes in whole-tree transpiration or soil water status.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leaf gas exchange, transpiration, water potential and xylem water flow measurements were used in order to investigate the daily water balance of intact, naturally growing, adult Larix and Picea trees without major injury. The total daily water use of the tree was very similar when measured as xylem water flow at breast height or at the trunk top below the shade branches, or as canopy transpiration by a porometer or gas exchange chamber at different crown positions. The average canopy transpiration is about 12% lower than the transpiration of a single twig in the sun crown of Larix and Picea. Despite the similarity in daily total water flows there are larger differences in the actual daily course. Transpiration started 2 to 3 h earlier than the xylem water flow and decreased at noon before the maximum xylem water flow was reached, and stopped in the evening 2 to 3 h earlier than the water flow though the stem. The daily course of the xylem water flow was very similar at the trunk base and top below the lowest branches with shade needles. The difference in water efflux from the crown via transpiration and the water influx from the trunk is caused by the use of stored water. The specific capacitance of the crown wood was estimated to be 4.7 x 10-8 and 6.3 x 10-8 kg kg-1 Pa-1 and the total amount of available water storage was 17.8 and 8.7 kg, which is 24% and 14% of the total daily transpiration in Larix and Picea respectively. Very little water was used from the main tree trunk. With increasing transpiration and use of stored water from wood in the crown, the water potential in the foliage decreases. Plant water status recovers with the decrease of transpiration and the refilling of the water storage sites. The liquid flow conductance in the trunk was 0.45 x 10-9 and 0.36 x 10-9 mol m-2s-1 Pa-1 in Larix and Picea respectively. The role of stomata and their control by environmental and internal plant factors is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...