ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • 1930-1934
Collection
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: A counter-propeller is a fixed propeller smaller than the main propeller, mounted either fore or aft of the latter and performing the function of changing the direction of motion of the fluid filaments, which naturally tend to adopt a helicoidal form. This paper presents a consideration of the real advantage of counter-propellers on aircraft and the best shape of the blades. First, the author determines the possible energy absorption by the tangential increments. This process will be facilitated by the examination of the polygons of the relative velocities fore and aft of the generic section, of radius r, of one of the blades of the propeller.
    Type: NACA-TM-587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This brief survey of the problems encountered in high-altitude flight deals in particular with the need for high lift coefficient in the wings, large aspect ratios in the wings, and also the problem of hermetically sealing the cabin.
    Type: NACA-TM-660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The primary purpose of this investigation was to obtain simultaneous data on the loads and stress experience in flight by the U. S. S. Los Angeles which could be used in rigid airship structure design. A secondary object of the investigation was to determine the turning and drag characteristics of the airship. The aerodynamic loading was obtained by measuring the pressure at 95 locations on the tail surfaces, 54 on the hull, and 5 on the passenger car. These measurements were made during a series of maneuvers consisting of turns and reversals in smooth air and during a cruise in rough air which was just short of squall proportions. The results of the pressure measurements on the hull indicate that the forces on the forebody of an airship are relatively small. The tail surface measurements show conclusively that the forces caused by gusts are much greater than those caused by horizontal maneuvers. In this investigation the tail surface loadings caused by gusts closely approached the designed loads of the tail structure. The turning and drag characteristics will be reported in separate reports.
    Type: NACA-TR-324
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The trials reported in this report were instigated by the Bureau of Aeronautics of the Navy Department for the purpose of determining accurately the speed and resistance of the U. S. S. "Los Angeles" with and without water recovery apparatus, and to clear up the apparent discrepancies between the speed attained in service and in the original trials in Germany. The trials proved very conclusively that the water recovery apparatus increases the resistance about 20 per cent, which is serious, and shows the importance of developing a type of recovery having less resistance. Between the American and the German speed trials without water recovery there remains an unexplained discrepancy of nearly 6 per cent in speed at a given rate of engine revolutions. Warping of the propeller blades and small cumulative errors of observation seem the most probable causes of the discrepancy. It was found that the customary resistance coefficients C, are 0.0242 and 0.0293 without and with the water recovery apparatus, respectively. The corresponding values of the propulsive coefficient K, are 56.7 and 44.6. If there is an error in these figures, it is probably in a slight overestimate of C, and an underestimate of K. The maximum errors are almost certainly less than 5 per cent. No scale effect was detected indicating variation of C with respect to velocity (author)
    Type: NACA-TR-318
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Type: NACA-TM-608
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Type: NACA-AC-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...