ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1930-1934  (3)
Collection
Publisher
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This report deals with the theory of the vortex street which enables the reproduction of the mechanism of the form resistance with suitable approximation under stated conditions, although such a resistance is precluded in a fluid which is perfectly inviscid. Disregarding for the present the origination of the vortex, the stream attitude in the wake of the body may be described approximately correct by the representation of individual vortices, without transgressing the law governing the motion of such vortices in an ideal fluid. Another striking example is the theory of the induced drag of wings, which likewise shows the extent of applying the vortex equations without overstepping the bounds of the dynamics of ideal fluids.
    Type: NACA-TM-611
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: This paper presents a mathematical discussion of the laminar boundary layer, which was developed with a view of facilitating the investigation of those boundary layers in particular for which the phenomenon of separation occurs. The treatment starts with a slight modification of the form of the boundary layer equation first published by Von Mises. Two approximate solutions of this equation are found, one of which is exact at the outer edge of the boundary layer while the other is exact at the wall. The final solution is obtained by joining these two solutions at the inflection points of the velocity profiles. The final solution is given in terms of a series of universal functions for a fairly broad class of potential velocity distributions outside of the boundary layer. Detailed calculations of the boundary layer characteristics are worked out for the case in which the potential velocity is a linear function of the distance from the upstream stagnation point. Finally, the complete separation point characteristics are determined for the boundary layer associated with a potential velocity distribution made up of two linear functions of the distance from the stagnation point. It appears that extensions of the detailed calculations to more complex potential flows can be fairly easily carried out by using the explicit formulae given in the paper. (author)
    Type: NACA-TR-504
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-01
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...