ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (3)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 12 (1974), S. 1371-1381 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Small-angle polarized light scattering from a deformed three-dimensional spherulite is formulated on the basis of the deformation model proposed in Part II of this series. The intensity distribution of scattered light is discussed chiefly for the cross-polarization condition, the so-called Hv polarization, as a function of elongation of the spherulite. In the undeformed state, the scattered intensity distribution forms the typical fourleaf clover pattern, and the intensity decreases with increasing fraction of crystals oriented randomly (type R crystals) within the crystal lamellae of the spherulites. In a system composed of type R crystals and folded-chain crystals (type B crystals) within the lamellae, the four-leaf pattern moves to the horizontal zone near the equator with increasing elongation of the spherulite, and, simultaneously, extends to some extent to the vertical zone near the meridional direction as a parameter measuring the ease of lamellar untwisting increases. In a system composed, in addition to type R and type B crystals, of crystals transformed from type B to type Ca and type Cr due to tilting and unfolding of polymer chains, respectively, within the crystal lamellae an eight-leaf pattern appears, even at small elongation up to about 30%. Each lobe of the eight-leaf pattern undergoes a characteristic change with increasing elongation. In both systems, the scattered intensity increases with sharpening of orientation distribution of crystals within the crystal lamellae.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A model relating crystal orientation in a semicrystalline polymer to the deformation of polymer spherulites is proposed. The distribution function for orientation of crystallites within crystal lamellae is assumed to be a function of lamellar orientation. In addition to the orientation of crystal lamellae in affine fashion, several parameters are introduced to characterize the untwisting of the crystal lamellae and the four different types of orientations of the crystallites within the crystal lamellae in the undeformed and deformed states of the spherulite. The model was tested by experiments in uniaxial stretching of a low-density polyethylene. The theoretical distributions of orientation of given reciprocal lattice vectors of the crystallites, such as the reciprocal lattice vectors of the (110) and (200) crystal planes, are compared with the results of x-ray diffraction experiments. It was found that the most important factors in fitting the model to experimental results are: (a) the fraction of crystallites having random orientation within lamella and, in turn, representing the degree of imperfection of the lamella in the undeformed state; (b) the ease of transition of crystal orientation within lamella from b-axis orientation parallel to the lamellar axis to two types of c-axis orientations (type Ca and type Cr) parallel to the stretching direction; and (c) the fraction of crystallites having orientation in type Cr (unfolding mechanism) rather than type Ca (rotation mechanism).
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The molecular orientation behavior of regenerated cellulose, in both crystalline and noncrystalline phases, was investigated quantitatively under various conditions during coagulation-regeneration from viscose solution and during drying of the resulting gel film. It was concluded that the stronger the tensions which arise parallel to the film surface during coagulation-regeneration and drying of the gel film, the more prominent become the uniplanar orientation of the (101) crystal plane and planar orientations of the crystal b axis and noncrystalline chain segments, all parallel to the film surface and associated with considerable distortion and disintegration of the regenerated crystal. This conclusion suggests an orientation mechanism of the cellulose II crystal, namely, rotation of the crystal around the U(101) axis associated with slippage of the (101) crystal plane, the most highly hydrated and most readily dislocated plane, in the direction of the tension, which is also parallel to the surface of the film. The behavior of this type of uniplanar orientation of the (101) crystal plane is characterized semiquantitatively by comparing observed distributions of the orientation of crystallographic axes with those calculated on the basis of a relatively simple model for crystal orientation.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...