ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1970-01-01
    Print ISSN: 0022-3654
    Electronic ISSN: 1541-5740
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1971-01-01
    Print ISSN: 0302-766X
    Electronic ISSN: 1432-0878
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1973-01-01
    Print ISSN: 0302-766X
    Electronic ISSN: 1432-0878
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1973-01-01
    Print ISSN: 0302-766X
    Electronic ISSN: 1432-0878
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1970-01-01
    Print ISSN: 0302-766X
    Electronic ISSN: 1432-0878
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 78 (1972), S. 176-191 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. The hunting spiderCupiennius salei Keys is able to direct its locomotion by making use of information about its own previous movement sequences (kinesthetic orientation). After a blinded spider is chased ca. 25 cm away from a prey-fly, it returns to the original capture site despite the preclusion of other possible orientation clues. The mean starting direction of such returns differs from the ideal return direction by only 2 ° (Fig. 4a, 5). Of all runs 95% are “successful” in that the animals approach the capture site as close as 5 cm (mean value) (Fig. 3). 2. Mechanical destruction of compound slit sense (“lyriform”) organs on femur and tibia of all legs results in disorientation of the spiders: more than 2/3 of their returns pass the capture site at a distance of more than 10 cm (Fig. 3, 4b). In addition, the mean angular deviation of starting directions increases significantly. The difference between the mean starting angles of the treated groups and the mean of intact animals, however, is significant only in some cases. 3. A special effort was made to evaluate not only thestarting directions and the “success” of a return path, but theentire return route, which is comprised of several path segments based upon each stopping and/or turning point. To this end a “walking error” en was determined for each segment (Fig. 8). For intact animals the error increases abruptly at the point nearest to the capture site. We therefore conclude that the spiders control also their walking distance kinesthetically. In the case of operated animals the mean “walking error” calculated from those segments lying before the “nearest point” increases by a factor of 4 to 5, as compared with intact spiders, whereas it remains about the sameat the “nearest point” itself (Fig. 9). 4. Small holes pierced into the leg cuticle near intact lyriform organs of otherwise intact “control animals” do not influence the success, starting angle, and walking errors of returns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 78 (1972), S. 315-336 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung 1. In Modellversuchen werden die reizleitenden Eigenschaften des cuticularen Spaltes der Spaltsinnesorgane (Mechanoreceptoren) von Spinnen untersucht. 2. Plexiglasmodelle zunehmend originalgetreuer Gestalt werden in Scheibenversuchen konstanter statischer Druckbelastung unterschiedlicher Richtung ausgesetzt (Abb. 5, 2). Die resultierende Verformung des äußeren und inneren Spaltrandes wird in Komponenten zerlegt und als Scherung, Kompression und Dilatation des Spaltrandes vermessen (Abb. 3). 3. Die Verformung des Spaltes ist bei Belastung senkrecht zu seiner Längsachse am größten. Die Wannengestalt des Originals reduziert im Modell insbesondere die beim einfachen Durchgangsspalt großen Scherungswerte am Außenrand. Die zusätzliche originalgetreue Verstärkung der Spaltränder erhöht die relative Bedeutung der Verformung bei Belastung senkrecht zur Spaltlängsachse, indem sie die von achsenparalleler Belastung verursachte Verformung vermindert (Abb. 6, 7). 4. Am Innenrand des Spaltes sind nach Einführung der Wannengestalt sowie der Randverstärkungen alle Verformungen praktisch eliminiert (Abb. 8). 5. Alle Verformungskomponenten sind beim Einzelspalt im Mittelbereich der Außenseite am größten und nehmen zu den Spaltenden hin ab (Abb. 6, 7). 6. Die Verformbarkeit der Spalten nimmt mit deren Länge zu (Abb. 9). 7. Die exocuticularen Lamellen verlaufen in der Nähe eines Spaltsinnesorgans in Richtung der Linien der größten Hauptspannung an Kerben (Abb. 10).
    Notes: Summary 1. The stimulus conducting properties of the cuticular slit of slit sense organs (mechanoreceptors) in spiders were studied on the basis of models. 2. Slits with different degrees of similarity to the actual shape of the sense organ were cut into plexiglass discs (Fig. 5). On these static pressure stresses were applied from varying directions (Fig. 2). The resulting deformations of the slit were measured in terms of compression, dilatation, and shear (Fig. 3). 3. The deformation of the slits is greatest with the stress applied at right angle to their long axis. A copy of the troughlike shape found in the original sense organ considerably reduces the shear component on the outer side of the model slit. If furthermore the equivalent of the cuticular thickenings surrounding the original slit is added to the model, the deformation caused by stress appliedparallel to the slit's long axis is reduced. Thus the significance of deformations resulting from stress at right angle to the slit axis is enhanced (Figs. 6, 7). 4. On the inner side of the slit the deformations are practically eliminated provided the trough-like shape and thickened frame of the original slit are copied in the model (Fig. 8). 5. The deformation of single slits is greatest in their middle region and decreases towards their ends (Figs. 6, 7). 6. The deformability of slits increases with their length (Fig. 9). 7. Close to a slit sense organ the exocuticular lamellae run in a way very similar to the stress trajectories found around a notch in a bar, uniformly loaded in tension (Fig. 10).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 74 (1970), S. 308-314 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 74 (1971), S. 326-328 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary In the hunting spider Cupiennius salei Keys, kinesthetic orientation towards a catching site from which it has previously been chased away is observed. This ability strongly depends on the lyriform slit sense organs found on femur and tibia of the walking legs. The animals miss the original catching site, if these organs are destroyed on all legs. The mean angular deviation of the starting angles of the returns increases significantly as compared with intact spiders (P〈0.005). Also, the directions of the mean vectors of the starting angles change (P〈0.05).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 81 (1972), S. 159-186 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung 1. Die Gestalt der verschiedenen cuticularen Hilfsstrukturen des Spaltsinnesorgans von Spinnen wird auf ihre jeweilige Bedeutung für die Reizleitungsvorgänge hin untersucht. Elektrophysiologische, elektronenmikroskopische sowie Untersuchungen an Modellen weisen sie in allen Fällen als besonders geeignet aus, den organadäquaten Eingangsreiz in Verformung umzusetzen und auf das Dendritenende zu fokussieren (Abb. 3 und 15). 2. Nach elektrophysiologischen Experimenten führt die Kompression der Spalte zur nervösen Aktivität der Receptoren (Abb. 5, 6 und 9). Dilatation vermochte das Spaltsinnesorgan nur in wenigen Einzelfällen und dann mit erheblich geringerer Wirksamkeit zu erregen. Dieser Befund ist funktionsmorphologisch deutbar. Er steht überdies in Einklang mit früher gewonnenen Daten zur Verformbarkeit und Richtcharakteristik des Spaltes und ermöglicht die Interpretation der topographischen Besonderheiten des metatarsalen lyraförmigen Organs. Tonische Reizung weist die Spaltsinnesorgane als langsam adaptierend aus (Abb. 7 und 9). 3. Nach dem cuticularen Spalt ist die ihn bedeckende Membran die nächste Station des Reizes auf dem Wege zum Dendriten. Aufgrund ihrer geringen Stärke und starken Wölbung, welche das Biegemoment erhöht, wird sie bei Spaltkompression besonders leicht verformt (Abb. 11). 4. Für die Reizaufnahme ist das Ende des längeren Dendriten wesentlich. Es endigt in einem Areal der Deckmembran, das sich aus folgenden Gründen wiederum durch besonders große Verformung bei Spaltkompression auszeichnet: a) Bereits im Ruhezustand ist die Deckmembran hier stärker gewölbt als anderswo; b) es befindet sich im tiefsten Bereich der Membranwölbung, wo das belastungsinduzierte Biegemoment am größten ist; c) es ist durch den sog. Koppelungszylinder gekennzeichnet, in dem das Dendritenende steckt und der eine weitere Steigerung der Membrandurchbiegung bei Belastung bewirkt (Abb. 12 und 13). 5. Der transduktionseinleitende Vorgang am Dendritenende selbst ist sehr wahrscheinlich dessen Verformung durch einachsig und senkrecht zur Spaltlängsachse einwirkende Kompressionskräfte, nicht jedoch seine Streckung (Abb. 15). 6. Einige Ergebnisse werden im Hinblick auf die campaniformen Sensillen, die analogen Organe der Insekten, diskutiert.
    Notes: Summary 1. The various cuticular auxiliary structures of the slit sense organ of the spider are examined for their respective importance in stimulus conduction. Electrophysiological, electronmicroscopical, as well as model experiments show that all structural parts are specifically well adapted to transform the adequate input stimulus into deformation of the receptor and to focus it on the dendrite (Pigs. 3 and 15). 2. According to electrophysiological experiments with different organs a compression of the slit is the decisive mechanical event leading to a nervous response (Figs. 5, 6 and 9). A dilatation is usually ineffective; only in rare cases it results in a comparatively small response. This finding can be interpreted in terms of functional morphology. In addition these results correspond well with previously collected data on the deformability of the slit and its directional characteristics. The same interpretation provides an understanding of the topographical peculiarities of the lyriform organ on the metatarsus. Tonic stimulation shows that the receptor is of the slowly adapting type (Figs. 7 and 9). 3. The covering membrane of the slit is the next station for the stimulus on its way to the dendrite. Its thinness as well as its pronounced curvature, which enhances the moment of bending, make it very liable to deformation which in turn results from a deformation of the slit proper (Fig. 11). 4. The tip of the longer of the two dendrites is essential in receiving the (already transformed) mechanical stimulus. It is located in an area of the covering membrane which is outstanding in its deformability for the following reasons: a) the covering membrane's curvature is higher here than elsewhere; b) it is at the deepest point of the curvature where the moment of bending is greatest; c) it is characterized by the presence of the coupling cylinder, which contains the dendritic end and which further enlarges the covering membrane's deformation under adequate load (Figs. 12 and 13). 5. In all likelihood the event leading to mechano-electrical transduction is the deformation of the dendrite caused by a monoaxial compression force in a direction perpendicular to the long axis of the slit. Stretching (lifting, resp.) of the dendrite is ineffective (Fig. 15). 6. Some of the results are discussed in terms of their relevance for campaniform sensilla, the analogous organs in insects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...