ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (87)
  • 1995-1999  (24)
  • 1990-1994  (39)
  • 1970-1974  (24)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 8 (1972), S. 334-355 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung Während der Zeit stärkster Wasseranspannung, am Ende der Trockenzeit, wurde der Einfluß der Klimafaktoren auf Nettophotosynthese, Dunkelatmung und Transpiration von Pflanzen in der Negev-Wüste untersucht. Versuchsobjekte waren Wildpflanzen (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), Kulturpflanzen der Sturzwasserfarm Avdat (Prunus armeniaca, Vitis vinifera) und künstlich bewässerte Arten (Citrullus colocynthis, Datura metel). 1. Lichtsättigung der Nettophotosynthese findet entsprechend der ungehinderten Enstrahlung am Wüstenstandort zwischen 60 und 90 klx statt. 2. Bei Bezug auf das Trockengewicht der Assimilationsorgane übertreffen die maximalen apparenten Photosyntheseraten der mesomorphen, bewässerten Fflanzen die der Wildpflanzen um das Zehnfache. Im Vergleich zu den übrigen Arten erreichen die Wildpflanzen bei Bezug auf die Oberfläche demgenüber höhere Werte. Bezogen auf den gesamten Chlorophyllgehalt liegen die maximalraten der Nettophotosynthese von Salsola und Noaea in der gleichen Größenordnung wie die von Datura, Citrullus und Wein. Selbst Hammada erreicht höhere Werte als die Aprikose. Daraus wird die hohe Photosynthesefähigkeit der Wildpflanzen am Ende der Trockenzeit deutlich. 3. In Anpassung an die Standortstemperaturen liegt der obere Temperaturkompensationspunkt der Nettophotosynthese bei den Wildpflanzen ungewöhnlich hoch. Mit Werten über 49°C erreicht und überschreitet er die bisher für Blütenpflanzen bekannten Maxima. Hammada weist bei 37°C noch optimale Leistungsfähigkeit auf, und bei einer Temperatur der Assimilationsorgane von 49°C ist die Photosyntheserate erst zu 50% gemindert. 4. Die Blattemperatur beeinflußt den Gaswechsel der Pflanzen auch durch Einwirkung auf den Spaltöffnungszustand. Temperatursenkung führt zu Verminderung, Temperaturerhöhung zu Steigerung des internen Diffusionswiderstandes der Blätter für Wasserdampf. Die Mittagsdepression von Nettophotosynthese und Transpiration der Wüstenpflanzen kann daher auf einer temperaturgesteuerten Spaltöffnungsreaktion beruhen. Es wird diskutiert, inwieweit auch die bei erhöhter Temperatur gleichzeitig vergrößerte Wasserdampfdruckdifferenz zwischen Blattmesophyll und Umgebungsluft auf dem Wege über die peristomatäre Transpiration Spaltöffnungsregelungen bedingen kann. 5. Erhöhung der Temperatur bis in die Nähe der Hitzeresistenzgrenze führt zur Verringerung des Diffusionswiderstandes gegen Wasserdampf, also zu einer Öffnungsreaktion der Stomata. Das verursacht verstärkte Transpirationskühlung. 6. Bei zunehmender Wasseranspannung in den Blättern kann der Diffusions-widerstand für Wasserdampf in Form einer Schwellenreaktion durch Spaltenschluß plötzlich steigen, oder es kommt zur einem kontinuierlichen Anstieg, der mit allmählicher Abnahme von Transpiration und Nettophotosynthese verbunden ist. 7. Bei vielen Pflanzen zeigt sich im Tageslauf eine Zunahme des Diffusions-widerstandes für Wasserdampf, der eine Abnahme der Transpirationsrate, aber keine Depression der Nettophotosynthese entspricht. Der Quotient zwischen CO2-Aufnahme und Wasserabgabe wird im Laufe des Tages also günstiger. Es wird erwogen, ob dieses für Wüstenpflanzen vorteilhafte Reaktionsvermögen auf einer Erhöhung des Mesophyllwiderstandes für den Transpirationsstrom beruhen kann.
    Notes: Summary The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60–90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 8 (1971), S. 296-309 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Carbon dioxide exchange and transpiration measurements of various wild and cultivated plants were carried out during the dry summer period in 1967 in the Central Negev Desert (Israel). A mobile laboratory used for these investigations is described. Measurements were carried out with conditioned plant chambers which followed either the ambient temperature and humidity or else allowed the experiments to be carried out under constant conditions. The accuracy of the measurements was estimated. The mean error of the determination of the CO2 exchange rate amounts to ±0.07 mg CO2·g-1·h-1. Transpiration rate is measured with an error of ±0.15 g H2O·g-1·h-1. The response time of the instrumentation to reach 90% equilibrium after a change in photosynthesis or transpiration is 7 to 9 minutes. Errors which are caused by changes of quality of incident radiant energy and altered turbulence conditions for the leaves enclosed in the chamber, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: δ13C ; δ15N ; Nitrogen assimilation ; Forest decline ; Picea abies ; Stable isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Natural carbon and nitrogen isotope ratios were measured in different compartments (needles and twigs of different ages and crown positions, litter, understorey vegetation, roots and soils of different horizons) on 5 plots of a healthy and on 8 plots of a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), which has recently been described in detail (Oren et al. 1988a; Schulze et al. 1989). The δ13C values of needles did not differ between sites or change consistently with needle age, but did decrease from the sun-to the shade-crown. This result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected. Twigs (δ13C between-25.3 and-27.8‰) were significantly less depleted in 13C than needles (δ13C between-27.3 and-29.1‰), and δ13C in twigs increased consistently with age. The δ15N values of needles ranged between-2.5 and-4.1‰ and varied according to stand and age. In young needles δ15N decreased with needle age, but remained constant or increased in needles that were 2 or 3 years old. Needles from the healthy site were more depleted in 15N than those from the declining site. The difference between sites was greater in old needles than in young ones. This differentiation presumably reflects an earlier onset of nitrogen reallocation in needles of the declining stand. δ15N values in twigs were more negative than in needles (-3.5 to-5.2‰) and showed age- and stand-dependent trends that were similar to the needles. δ15N values of roots and soil samples increased at both stands with soil depth from-3.5 in the organic layer to +4‰ in the mineral soil. The δ15N values of roots from the mineral soil were different from those of twigs and needles. Roots from the shallower organic layer had values similar to twigs and needles. Thus, the bulk of the assimilated nitrogen was presumably taken up by the roots from the organic layer. The problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 427-429 
    ISSN: 1432-1939
    Keywords: Insectivorous plants ; Insect capture ; Leaf growth ; Nitrogen storage ; Drosera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Rates of insect capture increased with leaf area in the insectivorous plant Drosera rotundifolia, and growth of new leaves was related to insect capture. However, increased leaf growth was counterbalanced by leaf abscission which was in turn related to insect capture and leaf growth. Leaf loss equaled leaf growth in plants having natural rate of insect capture. A large proportion of the nitrogen gain from prey was stored in the hypocotyl; it was estimated from feeding experiments that about 24% to 30% of the nitrogen stored in the hypocotyl after winter originated from insect capture in the previous season. The effect of insect capture is discussed in relation to the life cycle of Drosera.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Patagonia-vegetation ; Root distribution ; 13C-, 18O-, D-Isotope composition ; Water ; Plant succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44–45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27‰), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80–0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2–3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2–3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Carbohydrate ; Growth ; Nitrogen ; Phaseolus lunatus ; Storage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth, photosynthesis, and storage of nitrogen (N) and total non-structural carbohydrates (TNC) of a perennial wild type and an annual cultivar of lima bean (Phaseolus lunatus) were examined at different light intensities and N supplies. Relative growth rate and photosynthesis increased with light and N availability. N limitation enhanced biomass allocation into root rather than into shoot, while light limitation enhanced growth of leaf area. The TNC concentrations increased with light intensity and thus with photosynthesis, while the concentrations of organic N and nitrate decreased. Increasing N supply had the opposite effect. Therefore, TNC and organic N concentrations were negatively correlated (r=−0.90). Pool size of N or TNC increased with N and light availability when either resource was non-limiting, but increased little or remained constant when either resource was limiting. Storage reached a minimum when both resources were supplied at an equal rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Deep roots function ; Terrestrial vegetation ; Biomes ; Plant forms ; Root depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 102 (1995), S. 361-370 
    ISSN: 1432-1939
    Keywords: Picea abies (L.) Karst ; Ammonium ; Nitrate ; 15N ; Tracer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either 15N-ammonium or 15N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). 15N-labeling (62 mg 15N m-2 under conditions of 1.5 g N m-2 atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The 15N recovery within the entire stand (including soils) was 94%±6% of the applied 15N-ammonium tracer and 100%±6% of the applied 15N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the 15N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the 15N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both 15N-ammonium and 15N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. 15N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered 15N in spruce; no enrichment could be detected in stem wood. Although 15N-ammonium and 15N-nitrate were applied in the same molar quantities (15NH 4 + : 15NO 3 - =1:1), the tracers were diluted differently in the inorganic soil N pools (15NH 4 + /NH 4 + : 15NO 3 - /NO 3 - =1:9). Therefore the measured 15N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate 15N uptake from inorganic N pools resulted in a 2–4 times higher ammonium than nitrate uptake by P. abies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Temperature dependence of net photosynthesis under conditions of light saturation and maximum air humidity was measured throughout the season in the Central Negev Desert (Israel). Experimental plants were the wild growing Hammada scoparia and Prunus armeniaca cultivated in the runoff farm of Avdat. The optimum temperature for net photosynthesis and the upper temperature compensation point of CO2 exchange showed a characteristic seasonal variation with low values in spring and fall and high values in mid-summer. This shift was exhibited by plants growing under conditions of normal soil-water stress as well as by irrigated plants. There was no general correlation between the changes in temperature dependence of net photosynthesis of the plants, their maximum photosynthetic capacity under the experimental conditions, their daily photosynthesis maximum under natural conditions, and their rate of dark respiration. The seasonal shift of the photosynthetic response to temperature cannot be explained by changes in the temperature sensitivity of the stomata. It may be caused by seasonal changes of biochemical and/or biophysical properties. A number of observations made on other wild plants also showed, in all cases, seasonal shifts of the upper temperature compensation point, with an amplitude of 6.0°C–13.7°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Experiments with Prunus armeniaca were carried out under conditions of constant temperature but varying air humidity. Experiments were also contucted with a constant water vapor difference between the evaporating sites in a leaf and the air, but with varying leaf temperature. These served as a basis for predicting the daily course of total diffusion resistance under the natural climatic conditions of a desert. For the simulation, the rsults of the experiments at constant conditions with only one variable factor are fitted with empirical equations which serve as “calibration curves” to predict the change in diffusion resistance caused by a change in humidity and temperature calculated from the meteorological data of a desert day. The simulation shows that for P. armeniaca humidity and temperature are the dominating factors in controlling the daily course of diffusion resistance. For meteorologically very different days the simulation allows the increase in diffusion resistance in the morning to be predicted with an accuracy of 90%–105% as compared to directly observed measurements. In the afternoon, especially after extreme climatic conditions during the morning, the deviation between predicted and observed values of diffusion resistance may be greater, but not more than -20% to -30%. This possibly indicates the existence of an additional factor of significance which was not included in the simulation. The two peaked curves of net photosynthesis and transpiration characteristic of plants living under arid conditions can be explained in this species by the humidity-and temperature-controlled stomatal response. This stomatal regulation leads to a decreasing total daily transpirational water loss on a dry day as compared to a moist one. The significance of this controlling mechanism for the primary production and the water relations of P. armeniaca is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...