ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (28)
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 262 (1976), S. 766-768 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the photosphere, near sunspot minimum, the sector magnetic fields cover a range in latitude of typically ± 40 (ref. 8), while at 1 AU the comparable range in latitude has been compressed to perhaps ± 15. How is this compression in latitude accomplished? A typical magnitude of the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 255 (1975), S. 539-540 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the interval from about two days before a boundary is swept past the Earth by the solar wind to about four days after, the vorticity area index2 declined by about 10%, reaching a minimum about one day after the boundary. (The vorticity area index is a measure of the size and prominence of all ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Average (over longitude and time) photospheric magnetic field components are derived from 3′ Stanford magnetograms made near the solar minimum of cycle 21. The average magnetograph signal is found to behave as the projection of a vector for measurements made across the disk. The poloidal field exhibits the familiar dipolar structure near the poles, with a measured signal in the line Fe i λ 5250 Å of ≈ 1 G. At low latitudes the poloidal field has the polarity of the poles, but is of reduced magnitude (≈ 0.1 G). A net photospheric toroidal field with a broad latitudinal extent is found. The polarity of the toroidal field is opposite in the nothern and southern hemispheres and has the same sense as subsurface flux tubes giving rise to active regions of solar cycle 21. These observations are used to discusse large-scale electric currents crossing the photosphere and angular momentum loss to the solar wind.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 45 (1975), S. 83-91 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The synoptic appearance of solar magnetic sectors is studied using 454 sector boundaries observed at Earth during 1959–1973. The sectors are clearly visible in the photospheric magnetic field. Sector boundaries can be clearly identified as north-south running demarcation lines between regions of persistent magnetic polarity imbalances. These regions extend up to about 35 ° of latitude on both sides of the equator. They generally do not extend into the polar caps. The polar cap boundary can be identified as an east-west demarcation line marking the poleward limit of the sectors. The typical flux imbalance for a magnetic sector is about 4 × 1021 Mx.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Two methods of observing the neutral line of the large-scale photospheric magnetic field are compared: (1) neutral line positions inferred from Hα photographs (McIntosh, 1972a, 1975; McIntosh and Nolte, 1975) and (2) observations of the photospheric magnetic field made with low spatial resolution (3′) and high sensitivity using the Stanford magnetograph. The comparison is found to be very favorable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 56 (1978), S. 463-466 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Howard and Harvey (1970) analyzed Mt. Wilson Doppler shifts to obtain a daily measure of the Sun's differential rotation. The data were fitted to give an angular velocity of the form ω = a + b sin2 B + c sin4 B (B = heliographic latitude). Changes in a, b, c were found to be correlated (Howard and Harvey, 1970). Yoshimura (1972) used the anticorrelation of the b and c parameters to infer the existence of large-scale convection. Wolff (1975) used the b-c anticorrelation and a weak correlation between a and b to infer that variations of the Sun's polar and equatorial rotation rates are anticorrelated. In this paper, the anticorrelation of b and c is shown to be due to numerical coupling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 41 (1975), S. 461-475 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The large-scale structure of the solar magnetic field during the past five sunspot cycles (representing by implication a much longer interval of time) has been investigated using the polarity (toward or away from the Sun) of the interplanetary magnetic field as inferred from polar geomagnetic observations. The polarity of the interplanetary magnetic field has previously been shown to be closely related to the polarity (into or out of the Sun) of the large-scale solar magnetic field. It appears that a solar structure with four sectors per rotation persisted through the past five sunspot cycles with a synodic rotation period near 27.0 days, and a small relative westward drift during the first half of each sunspot cycle and a relative eastward drift during the second half of each cycle. Superposed on this four-sector structure there is another structure with inward field polarity, a width in solar longitude of about 100° and a synodic rotation period of about 28 to 29 days. This 28.5 day structure is usually most prominent during a few years near sunspot maximum. Some preliminary comparisons of these observed solar structures with theoretical considerations are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Comparison of the observed solar far ultraviolet irradiance and the observed solar sector structure during 1969 through 1972 shows a tendency for EUV maxima to be located near sector boundaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A solar telescope has been built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field have been made daily since May 1975. The typical mean field magnitude has been about 0.15 G with typical measurement error less than 0.05 G. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (see near the Earth with a 4 day lag). The differences in the observed structures can be understood in terms of a ‘warped current sheet’ model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 49 (1976), S. 177-185 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A Hale solar sector boundary is defined as the half (northern hemisphere or southern hemisphere) of a sector boundary in which the change of sector magnetic field polarity is the same as the change of polarity from a preceding spot to a following spot. Above a Hale sector boundary the green corona has maximum brightness, while above a non-Hale boundary the green corona has a minimum brightness. The Hale portion of a photospheric sector boundary tends to have maximum magnetic field strength, while the non-Hale portion has minimum field strength.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...