ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (4)
Collection
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 44 (1978), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Uptake of Rb+ was investigated in 6–8-day-old intact barley plants (Hordeum vulgare cv. Kristina), which had been cultivated or pretreated in nutrient solutions with various K+ concentrations. The relationship between Rb+ influx and the K+ concentration of roots appeared to be sigmoidal for plants grown in solutions containing K+, indicating regulation of Rb+ uptake by allosteric inhibition of the uptake mechanism. Pretreatment of the roots in K+-free solutions changed the pattern of uptake and caused the Rb+ influx to become linearly related to the chemical Rb+ potential of the uptake solution. Pretreatment in K+-free solutions probably abolishes the allosteric inhibition of a carrier system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 43 (1978), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The influence of plant age on free space uptake to the root, rate of continuous uptake and translocation of potassium and sulphate was investigated during about 100 days in intact, high-salt plants of spring wheat (Triticum aestivum L. cv. Svenno). The plants were grown in a green-house in complete nutrient solution. For the short term uptake experiments, the test solutions were labelled with 36Rb+ and 35S-sulphate.Free space uptake to the roots increased during the entire growth period. The SO2-4 free space uptake was divided into a Water Free Space (WFS) fraction and a labile-bound fraction. The labile-bound SO2-4 was considered to be constant during development, and the WFS fraction of SO−24 could then be computed. WFS increased from 2% of total cell volume in 1-day-old plants to 30% in 100-day old plants, apparently due to an increasing proportion of freely permeable root cells. As the WFS fraction of the free space uptake was known, the binding capacity (BC) of K+(86Rb−) of the cell walls and at the cytoplasmic surfaces could be computed. It is suggested that the increasing BC for cations with age was due to an increasing proportion of soluble pectate in the cell walls.Except for the initial 20 days, the continuous ion uptake rate decreased during development. It is suggested that the low uptake rate in young plants is limited by the energy supply to the roots and that the decreased uptake in older plants is due to the increasing proportion of metabolically inactive and collapsed roots. At the end of the cultivation period the ion uptake rate increased at the same time as there was a shift from active to passive ion uptake. This was shown by uptake experiments with 2,4-dinitrophenol (2,4-DNP).By changing the air humidity around the shoots and using 2,4 DNP, it was shown that ion and water uptake were closely linked to root activity in young plants but that transpiration pull became gradually more important for water uptake with age.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 42 (1978), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In uptake experiments from nutrient solutions containing 2.0 mM K+ labelled with 86Rb+, the relationship between potassium uptake efficiency and internal potassium concentration of the roots, [K+]i was found to be partly sigmoidal for intact plants of spring wheat (Triticum aestivum L.), glasshouse cucumber (Cucumis sativus L.), birch (Betula verrucosa Ehrh.), lingonberry (Vaccinium vitis-idaea L.), Scots pine (Pinus silvestris L.) and Norway spruce (Picea abies (L.) Karst.), The results were interpreted in terms of sigmoidal enzyme kinetics for allosteric regulation. Hill plots of the data gave straight lines at specific [K+]i intervals for the species. The slopes of the lines are the Hill coefficient, which could be regarded as a measure of the minimal number of allosteric sites. The Hill coefficient varied between - 14.4 and - 15.9. When divided by four, these values are fairly consistent with those in the literature. It is suggested that four active uptake sites interact with four groups of allosteric sites, each group containing four such sites, or that one active uptake site interacts with all the allosteric sites. Thus the results are evidence that the mechanism regulating K+ uptake is basically similar for the investigated plants. It is the interval of [K+]i mediating highly negatively cooperative allosteric regulation that differs among species.For some of the species, n decreased from about 15 and approached unity at high [K+]i values. This may indicate that only few sites are still available, making cooperativity unimportant. Alternatively high vacuolar [K+]i concentrations may give rise to an incorrect evaluation of data from Hill plots, since the cytoplasmic K+ content likely regulates the allosteric mechanism. Moreover, it is suggested that gene-controlled carrier synthesis is responsible for the varying maximum K+ uptake efficiency among species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 45 (1979), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Uptake of Rb+ was investigated in 12-day-old intact plants of sunflower (Helianthus annum L. var. californicus) which had been cultivated or pretreated in nutrient solutions with various K+ concentrations. The relationship between Rb+ influx and K+ concentration of the roots indicated regulation of Rb+ uptake by allosteric inhibition of the uptake mechanism. A constant passive influx occurred contemporaneously with the active uptake as shown by experiments at 0°C or with 2,4-dinitrophenol. The allosteric regulation of ion carrier activity occurred after a time lag of up to 1 h after the change of external solution. In experiments involving Rb+ treatments of K+-deficient plants, the synthesis of carriers for transport of Rb+ could be demonstrated. A model including allosteric regulation of Rb+ uptake in roots is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...