ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1975-09-01
    Print ISSN: 0032-2474
    Electronic ISSN: 1475-3057
    Topics: Ethnic Sciences , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1977-01-01
    Description: An analysis is made of the disturbance in conductive heat flow caused by drilling a bore hole in ice in which there is a vertical temperature gradient. The model used is that of a perfectly insulating hole placed in a linear temperature gradient; it is shown that the temperature measured at the bottom of the hole deviates from its value before drilling by an amount of order —0.6aUwhereais the bore-holt radius andUis the temperature gradient. The deviation takes effect in a few hours. The error is typically between 0.005 and 0.1 deg and is therefore significant only where very high accuracy is required. It should not be present in temperate glaciers, nor where the thermometer is properly frozen in, nor if temperatures are measured at the bore-hole walls far above the bottom.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1977-01-01
    Description: An analysis is made of the disturbance in conductive heat flow caused by drilling a bore hole in ice in which there is a vertical temperature gradient. The model used is that of a perfectly insulating hole placed in a linear temperature gradient; it is shown that the temperature measured at the bottom of the hole deviates from its value before drilling by an amount of order —0.6aU where a is the bore-holt radius and U is the temperature gradient. The deviation takes effect in a few hours. The error is typically between 0.005 and 0.1 deg and is therefore significant only where very high accuracy is required. It should not be present in temperate glaciers, nor where the thermometer is properly frozen in, nor if temperatures are measured at the bore-hole walls far above the bottom.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1976-12-07
    Description: The two-dimensional thermal boundary layer over a finite hot film embedded in a plane insulating wall, with a shear flow over it which reverses its direction, is analysed approximately using methods similar to those previously developed for viscous boundary layers (Pedley 1976). The heat transfer from the film is calculated both for uniformly decelerated and for oscillatory wall shear, and application is made to predict the response of hot-film anemometers actually used to measure oscillatory velocities in water and blood. The results predict that the velocity amplitude measured on the assumption of a quasi-steady response will depart from the actual amplitude at values of the frequency parameter St greater than about 0·3 (St = ΩX0/U0, where Ω = frequency, U0 = mean velocity, X0 = distance of hot film from the leading edge of the probe). This is in good agreement with experiment. So too is the shape of the predicted anemometer output as a function of time throughout a complete cycle, for cases when the response is not quasi-steady. However, there is a significant phase lead between the predicted and the experimental outputs. Various possible reasons for this are discussed; no firm conclusions are reached, but the most probable cause lies in the three-dimensionality of the velocity and temperature fields, since the experimental hot films are only about 2·5 times as broad as they are long, and are mounted on a cylinder not a flat plate. © 1976, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1975-01-28
    Description: Conventional boundary-layer theory cannot be applied when the fluid velocity outside the layer changes direction, and the leading edge of a finite body changes ends. In this paper an approximate method for examining the details of the boundary layer during a single flow reversal (occurring at t = 0) is described. It is based on the expectation that (a) long before reversal (t 〈 -t1), there will be a quasi-steady boundary layer appropriate to flow in one direction; (b) long after reversal (t 〉 t2) there will be a quasi-steady boundary layer appropriate to flow in the opposite direction, and (c) in between there will be a period of pure diffusion. The method is applied to a simple heat-transfer problem, in which a fluid of thermal diffusivity D flows with uniform velocity U = At over the plane y = 0; the strip 0 〈 x 〈 L of the plane is maintained at temperature T1, while the restof the plane and the fluid far away have temperature T0. The approximate solution is compared with an exact solution of the boundary-layer equation, and is shown to give an accurate prediction of the heat transfer as a function of time. The boundary-layer approximation itself breaks down in regions of length O(D2/3A−1/3) near the ends of the heated strip, as usual; it also breaks down in the neighbourhood of the point x = 1/2At2, t 〉 0, at which the influence of the new leading edge is first felt after flow reversal. In a solution of the full equation, this region is examined in detail, and boundary-layer theory is shown to be sufficiently accurate for the calculation of heat transfer. © 1975, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1976-07-14
    Description: Experimental measurements of the mean velocity profiles produced by axially symmetric turbulent boundary layers on cylinders of various diameters are described. The profile measurements were made with very small hot wires developed for this investigation. Measurements of the wall shear stress on cylinders ranging from 0.02 to 2.0 in. in diameter are also reported. In the boundary layer on cylinders, well-defined regions exist in which the two-dimensional law of the wall and a three-dimensional wake law are valid. There was no evidence that the boundary layer was not fully turbulent even on the cylinders of smallest diameter. Measurements of wall pressure fluctuations beneath the boundary layer on a 1 in. diameter cylinder are also described. The results were much the same as those previously reported by Willmarth & Yang (1970) for a 3 in. diameter cylinder. The only difference was the discovery that the wall pressure was correlated in the transverse direction approximately half-way around the cylinder. This was not true on the 3 in. diameter cylinder. © 1976, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1976-06-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1976-03-09
    Description: The viscous boundary layer on a finite flat plate in a stream which reverses its direction once (at t = 0) is analysed using an improved version of the approximate method described earlier (Pedley 1975). Long before reversal (t 〈 −t1), the flow at a point on the plate will be quasi-steady; long after reversal (t 〉 t2), the flow will again be quasi-steady, but with the leading edge at the other end of the plate. In between (−t1 〈 t 〈 t2) the flow is governed approximately by the diffusion equation, and we choose a simple solution of that equation which ensures that the displacement thickness of the boundary layer remains constant at t = −t1. The results of the theory, in the form of the wall shear rate at a point as a function of time, are given both for a uniformly decelerating stream, and for a sinusoidally oscillating stream which reverses its direction twice every cycle. The theory is further modified to cover streams which do not reverse, but for which the quasi-steady solution breaks down because the velocity becomes very small. The analysis is also applied to predict the wall shear rate at the entrance to a straight pipe when the core velocity varies with time as in a dog's aorta. The results show positive and negative peak values of shear very much larger than the mean. They suggest that, if wall shear is implicated in the generation of atherosclerosis because it alters the permeability of the wall to large molecules, then an appropriate index of wall shear at a point is more likely to be the r.m.s. value than the mean. © 1976, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1978-07-12
    Description: A sphere was subjected to a simple harmonic motion in an otherwise undisturbed liquid. Records of the resistance of the liquid to the motion for various amplitudes and frequencies were obtained. The resistance was first represented by an equation consisting of three terms with empirical coefficients: The steady-motion drag, a term due to the ‘added mass’ and a term due to the history of the motion. It was found that the data could be correlated only with a large degree of scatter by this type of equation. Subsequently an attempt was made to represent the resistance by means of a single term, with an empirical coefficient C. It was found that C correlated well with the acceleration number Vd/V2 and the Reynolds number Vd/v, where V, V and d are the acceleration, velocity and diameter of the sphere respectively and v is the kinematic viscosity of the liquid. C increased with Vd/V2 and decreased in the limit to the steady-motion drag coefficient Cd when Vd/V2 became very small. The range of the Reynolds number in the experiments was 102 〈 Vd/v 〈 104 and the range of the acceleration number was 0 ≤ Vd/V2 ≤ 10·5. © 1978, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1977-06-24
    Description: This paper is concerned with steady flow in collapsible tubes, such as veins, at fairly low Reynolds number. Lubrication theory is used to calculate the velocity and pressure distribution in an elliptical tube whose cross-sectional area and eccentricity vary slowly and in a given way with longitudinal distance x. The transverse velocity field and the effect of inertia on the primary velocity and pressure distributions are calculated to first order in the relevant small parameter. The results of these calculations are combined with a relationship between transmural pressure and the cross-sectional area at any x which is close to that measured in (large) veins, and are used to predict the pressure and flow in a collapsible tube when a given distribution of external pressure is applied. Different relationships between the tube perimeter and cross-sectional area are examined. The theory is applied to an experiment in which a segment of collapsible tube is supported between two rigid segments, and squeezed; predictions of the relationship between the pressure drop and flow rate are made for various experimental conditions. In particular, when the resistance of the downstream rigid segment is held constant, a range of flow rates is found in which the pressure drop falls as the flow rate is raised; this agrees with experiment. © 1977, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...