ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 67 (1980), S. 393-399 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Particles ranging in energy from just above solar wind, ≳1 keV, to galactic cosmic rays of many GeV or greater are observed to be always present in the interplanetary medium. These suprathermal particles appear to come from many different sources: among them the galaxy and nearby interstellar medium, the Sun, planetary magnetospheres and bow shock waves. Recent studies have shown that the interplanetary medium itself is a major source of low energy, ≲102 MeV ions, particularly during solar quiet times. Although the physical mechanisms by which various suprathermal particle populations are produced are not well understood, it appears that collisionless shock waves are often involved in the acceleration of these particles. Here we review previous observations of these suprathermal particles and present some preliminary new observations of low energy, 〈102 keV particles from experiments aboard the ISEE-1, 2, and 3 spacecraft.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 91 (1984), S. 345-357 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using observations from the ISEE-3 spacecraft, we compare the X-ray producing electrons and escaping electrons from a solar flare on 8 November, 1978. The instantaneous 5 to 75 keV electron spectrum in the X-ray producing region is computed from the observed bremsstrahlung X-ray spectrum. Assuming that energy loss by Coulomb collisions (thick target) is the dominant electron loss process, the accelerated electron spectrum is obtained. The energy spectrum of the escaping electrons observed from 2 to 100 keV differs significantly from the spectra of the X-ray producing electrons and of the accelerated electrons, even when the energy loss which the escaping electrons experienced during their travel from the Sun to the Earth is taken into account. The observations are consistent with a model where the escaping electrons come from an extended X-ray producing region which ranges from the chromosphere to high in the corona. In this model the low energy escaping electrons (2–10 keV) come from the higher part of the extended X-ray source where the overlying column density is low, while the high energy electrons (20–100 keV) come from the entire X-ray source.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 75 (1982), S. 245-261 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred ∼20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an Hα flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV. Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i ∼108 cm−3 and magnetic field strength ∼10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We describe a balloon payload designed to study the processes of energy release, particle acceleration, and heating of the active corona, in hard X-ray microflares and normal flares. An array of liquid nitrogen-cooled germanium detectors together with large area phoswich scintillation detectors provide the highest sensitivity (∼500 cm2) and energy resolution (≤0.7 keV) ever achieved for solar hard X-ray (∼15–600 keV) measurements. These detectors were flown in February 1987 from Australia on a long duration RAdiation COntrolled balloON (RACOON) flight (LDBF) which provided 12 days of observations before cutdown in Brazil. The payload includes solar cells for power, pointing and navigation sensors, a microprocessor controlled data system with VCR tape storage, and transmitters for GOES and ARGOS spacecraft. This successful flight illustrates the potential of LDBF's for solar flare studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 113 (1982), S. 217-220 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (≲1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting ∼3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to ≳100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically ∼102 kV compared to ∼10 kV for auroral substorms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 32 (1982), S. 169-184 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Following a solar flare in April 1979, a stream of ions and electrons appeared in interplanetary space for about 8 days. The ions follow a classic ESP pattern. Large fluxes of low energy (2–11 keV) electrons are also present throughout the event. Several distinct populations of these electrons can be identified in association with filaments of interplanetary magnetic field. The electron energy spectrum is remarkably well fit by a power law exponent -2.7 during most of the event. The pitch angle distribution of the low energy electrons are complex and undergo many changes. Weak pitch angle scattering and adiabatic effects play a role in shaping these distributions. The low energy electron fluxes increase following the strong interplanetary shock on 5 April 1979.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1984-04-01
    Print ISSN: 0038-0938
    Electronic ISSN: 1573-093X
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1982-01-01
    Print ISSN: 0038-0938
    Electronic ISSN: 1573-093X
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1980-08-01
    Print ISSN: 0038-0938
    Electronic ISSN: 1573-093X
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1980-03-01
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...