ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 25 (1980), S. 381-393 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The temperature gradient developed during casting of an unsaturated polyester for which the kinetics of reaction and the heat capacities, thermal conductivities, and densities were known from earlier work was measured experimentally as a function of time in a thick casting and compared with predicted values calculated from a mathematical model. Agreement was excellent. The castings were sectioned and the sections were examined by birefringence. These examinations show good agreement between the temperature gradient developed during cure and the residual stress gradient. This work demonstrates that the extent of cure as a function of position can be predicted from heat transfer calculations if the reaction kinetics and thermal properties are known and that the residual stress gradient is dependent upon the temperature gradient developed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 20 (1980), S. 769-772 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A finite difference method is presented for the solution of two dimensional flow problems in polymer processing. The method is applicable to narrow gaps of any shape and variable thickness. NPA was developed for analyzing the filling stage of the injection molding cycle, but it could be used in extrusion, blown film, and other polymer processing operations. In NPA the position of the flow front is calculated at the end of each time increment, and an axial node is placed at the newest location of the flow front. Each axial node is then divided into a determined number of radial nodes. The velocity and temperature profiles are obtained from the simultaneous solution of the momentum and energy equations. The use of finite differences transforms the continuity, momentum, and energy equations into a system of linear equations which can be solved by any direct or iterative technique. The procedure is repeated until axial nodes have been placed throughout the whole flow channel or until the flow front stops due to polymer solidification. The main advantage of this technique, when compared to the use of a fixed finite difference grid, is that computation time is saved by considering only nodes filled with the fluid. Empty nodes are not considered and corrections for partially filled nodes are not needed. No complications due to the parabolic-shape of the flow front profile are introduced because the axial nodes are placed at average front locations determined by the average velocity at the particular time interval under consideration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...