ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (4)
  • D70
  • F22
  • 1980-1984  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 26 (1981), S. 1049-1056 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 26 (1981), S. 395-409 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A process has been developed by which very high-modulus semicrystalline polymer films can be extruded continuously from a melt. This is accomplished by controlled cooling of the melt in a two-stage flow channel. A temperature gradient along the flow channel quenches the melt prior to an area reduction in which the polymer undergoes solid-state orientation. Analysis of high-density polyethylene tapes extruded by this process shows that they have properties similar to samples hydrostatically extruded at 120°C. Infrared analysis was used to determine both the degree of crystallinity and degree of orientation in these tapes as well as previously prepared hydrostatically extruded samples.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 23 (1984), S. 1249-1259 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We consider the irreversible dissociation kinetics of proteins that bind cooperatively and nonspecifically to DNA. Our model consists of an infinitely long one-dimensional nucleic acid lattice on which are bound protein ligands. A set of adjacent bound proteins forms a cluster of length n. A protein molecule may dissociate from any site within the bound cluster, not only from the ends, as was assumed in a previous model of this process due to Lohman [(1983) Biopolymers 22, 1697-1713]. By considering this additional pathway, we present a more general treatment of the dissociation kinetics of cooperatively bound ligands. We show that dissociation from the (n-2) internal positions of an n-cluster is an important pathway when the initial fractional saturation of the lattice is close to unity and the co operatively is low. When the fractional saturation is initially equal to 1 and the co operatively is low, our model does not give the zero-order dissociation kinetics predicted by the Lohman model.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 20 (1981), S. 1651-1669 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Approximate methods are developed and evaluated for treating the rate of binding ligands that cover several contiguous sites to a homogeneous one-dimensional lattice, which represents a nucleic acid or other linear biopolymer. The model requires as input only the number of lattice sites necessary for binding, the total number (possibly infinite) of lattice sites, and elementary rate constants for the cooperative and noncooperative association and dissociation of the ligand on the lattice. The computational methods employed are an extension of the triplet closure approximation from the helix-coil (single-site ligand) problem to the large ligand binding problem. It is found that consideration of clusters of n + 2 lattice sites, where each ligand covers n sites, gives a surprisingly accurate description of the kinetics. The approximation is implemented by an extension of the matrix-iteration approach proposed by Craig and Crothers. The effects of the finite lattice length, as well as the capability to treat ligand motion along the lattice, are incorporated. When all symmetries are taken into consideration, the time required for the matrix iteration calculation rises only linearly with the ligand length n and is considerably less than that of the Monte Carlo method, which is used as a standard for comparison.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...