ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Noise emission from very small chord and very large chord airfoils was measured with eleven 0.63 cm microphones placed along a horizontal semicircle (4.57 m radius) that was centered at the leading edge of the test airfoil. The noise signals were analyzed by an automated spectrum analyzer which yielded 1/3-octave band sound pressure level spectra for each microphone, and the data were corrected to remove the effects of atmospheric attenuation and jet noise. It is found that the effect of thickness is large and must be accounted for in any fundamental airfoil noise theory that attempts to describe the noise emitted from real airfoils. Incident mean velocity gradients and compressibility must also be taken into account. The effect of thickness increases with frequency, with thick airfoils being quieter than thin ones.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 20; Mar. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Hypersonic flow over spherical dome protuberances was investigated to determine increased pressure and heating loads to the surface. The configuration was mathematically modeled in a time-dependant three-dimensional analysis of the conservation of mass, momentum (Navier-Stokes), and energy equations. A boundary mapping techique was used to obtain a rectangular parallelepiped computational domain, and a MacCormack explicit time-split predictor-corrector finite difference algorithm was used to obtain solutions. Results show local pressures and heating rates for domes one-half, one, and two boundary layer thicknesses high were increased by factors on the order of 1.4, 2, and 6, respectively. However, because lee-side pressure and thermal loads were reduced the two lower height domes did not experience any net increase in total loads. The total loads on the higher dome were increased by twenty-five percent. Flow over the lower dome was everywhere attached while flow over the intermediate dome had small windward and leeside separations. The higher dome had an unsteady windward separation region and a large leeside separation region. Trailing vortices form on all domes with intensity increasing with dome height. Discussions of applying the results to a thermally bowed thermal protection system are presented.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 83-1557
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Attention is given to hypersonic laminar flow over a quilted surface configuration that simulates an array of Space Shuttle Thermal Protection System panels bowed in a spherical shape as a result of thermal gradients through the panel thickness. Pressure and heating loads to the surface are determined. The flow field over the configuration was mathematically modeled by means of time-dependent, three-dimensional conservation of mass, momentum, and energy equations. A boundary mapping technique was then used to obtain a rectangular, parallelepiped computational domain, and an explicit MacCormack (1972) explicit time-split predictor-corrector finite difference algorithm was used to obtain steady state solutions. Total integrated heating loads vary linearly with bowed height when this value does not exceed the local boundary layer thickness.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 84-1630
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...