ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The objective of this paper is to describe current results from an on-going study of the mechanisms that led to the failure of the TIBB. Experimental and analytical results are presented. Experimental results include load, strain, and deflection data for the TIBB (Technology Integration Box Beam). An analytical investigation was conducted to compliment the experimental investigation and to gain additional insight into the TIBB structural response. Analytical results include strain and deflection results from a global analysis of the TIBB. A local analysis of the failure region is being completed. These analytical results are validated through comparisons with the experimental results from the TIBB tests. The experimental and analytical results from the TIBB tests are used to determine a sequence of events that may have resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Typical analytical results are presented for a stiffener runout specimen that is being defined to simulate the TIBB failure mechanisms. The results of this study are anticipated to provide better understanding of potential failure mechanisms in composite aircraft structures, to lead to future design improvements, and to identify needed analytical tools for design and analysis.
    Keywords: STRUCTURAL MECHANICS
    Type: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 2; p 673-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms.
    Keywords: STRUCTURAL MECHANICS
    Type: Third NASA Advanced Composites Technology Conference, Volume 1, Part 2; p 951-965
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: State-of-the-art nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain-displacement relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis.
    Keywords: STRUCTURAL MECHANICS
    Type: In: AHS National Technical Specialists' Meeting on Rotorcraft Structures, Williamsburg, VA, Oct. 29-31, 1991, Proceedings (A93-27951 10-05); 15 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
    Keywords: STRUCTURAL MECHANICS
    Type: International Journal for Numerical Methods in Engineering (ISSN 0029-5981); 33; 855-868
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The 1990 UNIX version of NASTRAN was ported to two new platforms that are not supported by COSMIC: the Sun SPARC workstation and the Apple Macintosh using the A/UX version of UNIX. The experiences of the authers in porting NASTRAN is summarized here. Suggestions for users who might attempt similar ports are given.
    Keywords: STRUCTURAL MECHANICS
    Type: Computer Software Management and Information Center, Nineteenth NASTRAN (R) Users' Colloquium; p 14-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: CASES (Controls, Astrophysics and Structures Experiment in Space) is a proposed space experiment to collect x-ray images of the galactic center and solar disk with unprecedented resolution. This requires precision pointing and suppression of vibrations in the long flexible structure that comprises the 32-m x-ray telescope optical bench. Two separate electro-optical sensor systems are provided for the ground test facility (GTF). The Boom Motion Tracker (BMT) measures eigenvector data for post-mission use in system identification. The Tip Displacement Sensor (TDS) measures boom tip position and is used as feedback for the closed-loop control system that stabilizes the boom. Both the BMT and the TDS have met acceptance specifications and were delivered to MSFC in February 1992. This paper describes the sensor concept, the sensor configuration as implemented in the GTF, and the results of characterization and performance testing.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, The Fifth NASA(DOD Controls-Structures Interaction Technology Conference, Part 1; p 263-275
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, The Fifth NASA(DOD Controls-Structures Interaction Technology Conference, Part 1; p 239-249
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-CR-4598 , NAS 1.26:4598 , LMSC/F440397
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-102748 , NAS 1.15:102748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-12-01
    Description: New finite element analysis methods are examined by application to a complicated composite wing panel from the V-22 rotorcraft. A detailed FEM model with a relatively coarse mesh of 9-node elements was generated, and linear and nonlinear stress analyses, first-ply failure analyses, and buckling analyses were conducted. At low values of applied load, i.e., up to the design ultimate load of the panel, the linear stress analysis accurately predicted the strains and structural response characteristics of the panel.
    Keywords: STRUCTURAL MECHANICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...