ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (3)
  • 1995-1999  (2)
  • 1980-1984  (1)
  • 1
    Publication Date: 1996-04-26
    Description: Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) selectively bind to distinct members of the Trk family of tyrosine kinase receptors, but all three bind with similar affinities to the neurotrophin receptor p75 (p75NTR). The biological significance of neurotrophin binding to p75NTR in cells that also express Trk receptors has been difficult to ascertain. In the absence of TrkA, NGF binding to p75NGR activated the transcription factor nuclear factor kappa B (NF-kappa B) in rat Schwann cells. This activation was not observed in Schwann cells isolated from mice that lacked p75NTR. The effect was selective for NGF; NF-kappa B was not activated by BDNF or NT-3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, B D -- Kaltschmidt, C -- Kaltschmidt, B -- Offenhauser, N -- Bohm-Matthaei, R -- Baeuerle, P A -- Barde, Y A -- New York, N.Y. -- Science. 1996 Apr 26;272(5261):542-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiochemistry, Max-Planck Institute for Psychiatry, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain-Derived Neurotrophic Factor ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA/metabolism ; L Cells (Cell Line) ; Mice ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Nerve Growth Factors/*metabolism/pharmacology ; Nerve Tissue Proteins/metabolism/pharmacology ; Neurotrophin 3 ; Proto-Oncogene Proteins/metabolism ; Rats ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, Nerve Growth Factor ; Receptor, trkA ; Receptors, Nerve Growth Factor/*metabolism ; Schwann Cells/*metabolism ; Signal Transduction/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-10-27
    Description: Near-field scanning optical microscopy of phospholipid monolayers doped with fluorescent lipid analogs reveals previously undescribed features in various phases, including a concentration gradient at the liquid-expanded/liquid-condensed domain boundary and weblike structures in the solid-condensed phase. Presumably, the web structures are grain boundaries between crystalline solid lipid. These structures are strongly modulated by the addition of low concentrations of cholesterol and ganglioside GM1 in the monolayer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, J -- Tamm, L K -- Bohm -- Ramalingam, T S -- Betzig, E -- Edidin, M -- AI14584/AI/NIAID NIH HHS/ -- AI30557/AI/NIAID NIH HHS/ -- DK44375/DK/NIDDK NIH HHS/ -- R37 AI030557/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Oct 27;270(5236):610-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7570018" target="_blank"〉PubMed〈/a〉
    Keywords: 1,2-Dipalmitoylphosphatidylcholine/*chemistry ; Boron Compounds ; Cholesterol/*chemistry ; Fluorescent Dyes ; G(M1) Ganglioside/*chemistry ; Microscopy/*methods ; Microscopy, Fluorescence ; Phosphatidylcholines ; Phospholipids/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-02-24
    Description: The increase in temperature outward from the surface of a stellar photosphere can be understood by looking at the local energy balance. The relatively high-density stellar photosphere is cooled effectively by radiative energy loss penetrating the optically thin corona. For the low-density chromosphere and corona, if the energy input cannot be balanced by radiative energy losses, the temperature will rise steeply, possibly up to 1 million degrees or more. Coronal heating and emission appear to be strongly influenced by magnetic fields, leading to large differences in x-ray emission for otherwise similar stars. Comparatively small variations are seen in the overall chromospheric emission of stars. Chromospheres are probably mainly heated by shock-wave energy dissipation, modified by magnetic fields.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohm-Vitense, E -- New York, N.Y. -- Science. 1984 Feb 24;223(4638):777-84.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17737739" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...