ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 21 (1987), S. 701-718 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A systematic study of the effects of polymer surface properties on the interaction with human endothelial cells (HEC) may lead to the development of small-diameter vascular grafts. HEC, suspended in culture medium containing 20% serum adhered and spread onto moderately wettable polymers such as TCPS (tissue culture polystyrene). Reduced or no adhesion of HEC was observed upon the hydrophobic polymers PETP (polyethyleneterephthalate, Dacron) and FEP (fluoroethylenepropylene copolymer, Teflon). Polymers precoated with the proteins albumin (Alb), high density lipoprotein (HDL), and immunoglobulin G (IgG) inhibited the adhesion of HEC, whereas fibronectin (Fn) coátings promoted cell adhesion. Endothelialization of PETP and FEP only occurred after precoating of these materials with Fn. The adsorption of Fn, Alb, HDL, and IgG from solutions of different serum concentrations onto TCPS, PETP, and FEP was related to the adhesion of HEC. Serum Fn only adsorbed onto TCPS, with the maximum at 0.1% serum concentration. Maximal cell adhesion onto TCPS was also observed after pretreatment with a solution containing 0.1% serum. The cell adhesion inhibiting proteins Alb and HDL preferentially adsorbed at higher serum concentrations. Desorption of these proteins and exchange for, e. g., cellular Fn may result in cell spreading and proliferation of HEC upon TCPS.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Human endothelial cells (HEC) suspended in a culture medium containing 20% human serum (CMS) adhere and spread on(to) moderately wettable polymers, such as tissue culture polystyrene (TCPS). We have previously shown that serum derived-fibronectin, which is a cell adhesion promoting protein, has a high affinity for TCPS, but that the amount of fibronectin which adsorbed from CMS was relatively small. In this study we investigated whether fibronectin derived from HEC contributes to the adhesion and spreading of the cells on(to) TCPS. Therefore, HEC were seeded in the presence of fibronectin-depleted CMS. The amount of fibronectin detected on TCPS increased with both cell seeding density and incubation time. Although initial HEC adhesion is delayed on TCPS which had been precoated with albumin (Alb), high density lipoprotein (HDL) or immunoglobulin G(IgG), maximal numbers of adhering and spreading HEC were found on these surfaces 6 h after seeding of HEC. Fibronectin was detected on these surfaces, but an exchange of preadsorbed Alb, HDL, or IgG for fibronectin could not be demonstrated. We conclude that HEC deposit fibronectin onto TCPS, irrespective of the presence of a preadsorbed layer of proteins which delay cell adhesion.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...