ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 24; 1802-181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 741-764
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The discipline research in turbomachinery, which is directed toward building the tools needed to understand such a complex flow phenomenon, is based on the fact that flow in turbomachinery is fundamentally unsteady or time dependent. Success in building a reliable inventory of analytic and experimental tools will depend on how the time and time-averages are treated, as well as on who the space and space-averages are treated. The raw tools at disposal (both experimentally and computational) are truly powerful and their numbers are growing at a staggering pace. As a result of this power, a case can be made that a situation exists where information is outstripping understanding. The challenge is to develop a set of computational and experimental tools which genuinely increase understanding of the fluid flow and heat transfer in a turbomachine. Viewgraphs outline a philosophy based on working on a stairstep hierarchy of mathematical and experimental complexity to build a system of tools, which enable one to aggressively design the turbomachinery of the next century. Examples of the types of computational and experimental tools under current development at Lewis, with progress to date, are examined. The examples include work in both the time-resolved and time-averaged domains. Finally, an attempt is made to identify the proper place for Lewis in this continuum of research.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion '87. Session 3: Internal Fluid Mechanics Research; 23 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The application of laser anemometry to the measurement of turbomachinery flow fields is reviewed. Choices of optical configuration, seed particle generation, and seed injection techniques are discussed. The modification of experimental facilities to gain optical access is considered. The efficiency of data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Data reduction and analysis techniques for extracting and understanding the flow physics from laser anemometer measurements are presented.
    Keywords: MECHANICAL ENGINEERING
    Type: Von Karman Inst. for Fluid Dynamics Measurement Techniques in Turbomachines, Volume 1; 122 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: Shock structure measurements acquired in a low aspect ratio transonic fan rotor are presented and analyzed. The rotor aspect ratio is 1.56 and the design tip relative Mach number is 1.38. The rotor flowfield was surveyed at near maximum efficiency and near stall operating conditions. Intra-blade velocity measurements acquired with a laser fringe anemometer on blade-to-blade planes in the supersonic region from 10 to 60 percent span are presented. The three-dimensional shock surface determined from the velocity measurments is used to determine the shock surface normal Mach number in order to properly calculate the ideal shock jump conditions. The ideal jump conditions are calculated based upon the Mach numbers measured on a surface of revolution and based upon the normal Mach number to indicate the importance of accounting for shock three dimensionality in turbomachinery design. Comparison of the shock locations with those predicted by a 3-D Euler code showed very good agreement and indicated the usefulness of integrating computational and experimental work to enhance the understanding of the flow physics occurring in transonic turbomachinery passages.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AGARD Transonic and Supersonic Phenomena in Turbomachines; 14 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flowfield and for use in the development of empirical models for those flow features which cannot be readily modelled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields are discussed. Aspects of laser fringe anemometer optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.
    Keywords: ENGINEERING (GENERAL)
    Type: AGARD Advanced Instrumentation for Aero Engine Components; 32 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Unsteady velocity field measurements made within the stator row of a transonic axial-flow fan are presented. Measurements were obtained at midspan for two different stator blade rows using a laser anemometer. The first stator row consists of double circular-arc airfoils with a solidity of 1.68. The second features controlled-diffusion airfoils with a solidity of 0.85. Both were tested at design-speed peak efficiency conditions. In addition, the controlled-diffusion stator was also tested at near stall conditions. The procedures developed here are used to identify the rotor wake generated and unresolved unsteadiness from the velocity measurements (rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and unresolved unsteadiness refers to all remaining unsteadiness which contributes to the spread in the distribution of velocities such as vortex shedding, turbulence, etc.). Auto and cross correlations of these unsteady velocity fluctuations are presented to show their relative magnitude and spatial distributions. Amplification and attenuation of both rotor wake generated and unresolved unsteadiness are shown to occur within the stator blade passage.
    Keywords: AERODYNAMICS
    Type: NASA-TM-88946 , E-3394 , NAS 1.15:88946 , USAAVSCOM-TR-86-C-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within high speed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctuations, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.
    Keywords: AERODYNAMICS
    Type: NASA-TM-88945 , E-3393 , NAS 1.15:88945 , USAAVSCOM-TR-86-C-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Unsteady velocity field measurements made within the stator row of a transonic axial-flow fan are presented. Measurements were obtained at midspan for two different stator blade rows using a laser anemometer. The first stator row consists of double circular-arc airfoils with a solidity of 1.68. The second features controlled-diffusion airfoils with a solidity of 0.85. Both were tested at design-speed peak efficiency conditions. In addition, the controlled-diffusion stator was also tested at near stall conditions. The procedures developed here are used to identify the rotor wake generated and unresolved unsteadiness from the velocity measurements (rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and unresolved unsteadiness refers to all remaining unsteadiness which contributes to the spread in the distribution of velocities such as vortex shedding, turbulence, etc.). Auto and cross correlations of these unsteady velocity fluctuations are presented to show their relative magnitude and spatial distributions. Amplification and attenuation of both rotor wake generated and unresolved unsteadiness are shown to occur within the stator blade passage.
    Keywords: AERODYNAMICS
    Type: ASME PAPER 87-GT-227
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within highspeed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctutions, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.
    Keywords: AERODYNAMICS
    Type: ASME PAPER 87-GT-226
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...