ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • 1
    Publication Date: 2011-08-19
    Description: Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-86900 , E-2347 , NAS 1.15:86900
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Local heat-transfer coefficients were experimentally mapped on the end-wall surface of a three-times turbine vane passage in a static, single-row cascade operated with room-temperature inlet air over a range of Reynolds numbers. The test surface was a composite of commercially available materials: a Mylar sheet with a layer of cholesteric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat-transfer coefficients were mapped over the end-wall surface. The local heat-transfer coefficients (expressed as nondimensional Stanton number) are presented for inlet Reynolds numbers (based on vane axial chord) from 0.83 x 10(5) to 3.97 x 10(5).
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME 1988 National Heat Transfer Conference; Jul 24, 1988 - Jul 27, 1988; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STANS boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME PAPER 85-GT-59 , ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825); 107; 953-960
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...