ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Effective procedures are presented for the response analysis of the Space Shuttle Main Engine turbopumps under transient loading conditions. Of particular concern is the determination of the nonlinear response of the systems to rotor imbalance in presence of bearing clearances. The proposed procedures take advantage of the nonlinearities involved being localized at only a few rotor/housing coupling joints. The methods include those based on integral formulations for the incremental solutions involving the transition matrices of the rotor and housing. Alternatively, a convolutional representation of the housing displacements at the coupling points is proposed which would allow performing the transient analysis on a reduced model of the housing. The integral approach is applied to small dynamical models to demonstrate the efficiency of the approach. For purposes of assessing the numerical integration results for the nonlinear rotor/housing systems, a numerical harmonic balance procedure is developed to enable determining all possible harmonic, subharmonic, and nonperiodic solutions of the systems. A brief account of the Fourier approach is presented as applied to a two degree of freedon rotor-support system.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-CR-179035 , NAS 1.26:179035
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine (SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the nonlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increment. The method is applied to a nonlinear generic model of the high pressure oxygen turbopump (HPOTP). As compared to the fourth order Runge-Kutta numerical integration methods, the convolution approach proved to be more accurate and more highly efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic responses fo the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-rotor models to their coordinates at the bearing clearances. Recommendations are included for further development of the method, for extending the analysis to aperiodic and chaotic regimes and for conducting critical parameteric studies of the nonlinear response of the current SSME turbopumps.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-CR-183574 , NAS 1.26:183574
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: A general impedance method using reduced submodels has been developed for the linear dynamic analysis of rotor systems. Formulated in terms of either modal or physical coordinates of the subsystems, the method enables imbalance responses at specific locations of the rotor systems to be efficiently determined from a small number of 'master' degrees of freedom. To demonstrate the capability of this impedance approach, the Space Shuttle Main Engine high-pressure oxygen turbopump has been investigated to determine the bearing loads due to imbalance. Based on the same formulation, an eigenvalue analysis has been performed to study the system stability. A small 5-DOF model has been utilized to illustrate the application of the method to eigenvalue analysis. Because of its inherent characteristics of allowing formulation of reduced submodels, the impedance method can significantly increase the computational speed.
    Keywords: STRUCTURAL MECHANICS
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 5; 602-609
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A numerical method is presented to determine the steady-state nonlinear response of a rotor-support system due to deadband and rubbing using discrete Fourier transformation and inverse discrete Fourier transformation. Damaging subharmonic and superharmonic responses are found to occur in presence of a side force. The calculated results agree with the general trends which have been observed experimentally by other investigators. The effects of selected nondimensionalized parameters on rotor response are studied.
    Keywords: MECHANICAL ENGINEERING
    Type: ASME, Transactions, Journal of Vibration, Acoustics, Stress, and Reliability in Design (ISSN 0739-3717); 109; 255-261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...