ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (14)
  • 1
    Publication Date: 2011-08-19
    Description: The present use of a parabolized Navier-Stokes solver to accurately simulate the flowfield in a supersonic inlet yields good agreement between numerical analysis and experiment for a Mach 7.4 inlet under cruise conditions, with an internal compression ratio of 8. The significance of real gas effects on the performance calculation of a hypersonic inlet is demonstrated, with small changes in the ratio of specific heats resulting in a substantial change in the calculated pitot pressure ratio.
    Keywords: AERODYNAMICS
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 2; 381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: A newly developed, 3-mm-diam, dual hot-wire aspirating probe was used to measure the time-resolved stagnation temperature and pressure in a transonic cryogenic wind tunnel. Measurements were taken in the freestream of the settling chamber and test section. Data were also obtained in the unsteady wake shed from an airfoil oscillating at 5 Hz. The investigation revealed the presence of large fluctuations in the settling chamber occuring at the blade passing frequency of the driving fan of the tunnel. These fluctuations decrease at the test section. The rms value of the fluctuating stagnation pressure decreased from 17.5 percent in the settling chamber to 3.7 percent in the test section. Fluctuating stagnation temperature decreased from 12.3 percent to 8.4 percent. Measurements in the wake of the oscillating airfoil showed a fluctuating stagnation temperature of as much as 42 K in rms value.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Aircraft (ISSN 0021-8669); 23; 244-249
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA Journal (ISSN 0001-1452); 27; 1074-108
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 3; 157-163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: An investigation which was designed to provide insight into the fundamental aspects of fan rotor-downstream strut interaction was undertaken. High response, miniature pressure transducers were embedded in the rotor blades of an experimental fan rig. Five downstream struts were placed at several downstream locations in the discharge flow annulus of the single-stage machine. Significant interaction of the rotor blade surface pressures with the flow disturbance produced by the downstream struts was measured. Several numerical procedures for calculating the quasi-steady rotor response due to downstream flow obstructions were developed. A preliminary comparison of experimental and calculated fluctuating blade pressures on the rotor blades shows general agreement between the experimental and calculated values.
    Keywords: AERODYNAMICS
    Type: NASA-CR-175756 , NAS 1.26:175756 , IR-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: In the present study of the unsteady pressure field produced on fan rotor blades by interaction with downstream struts, a single stage, low speed axial-flow fan was instrumented with blade-mounted high frequency pressure transducers. In addition, stationary pressure problems were used to map out the flowfield. Fluctuating pressure measurements are presented for blade midspan and 85-percent span on both the suction and pressure surfaces of the rotor blades at several positions of the downstream struts, and for two different flow coefficients. The strut is found to produce an effect on the unsteady pressure field on the rotor blades; this effect exceeds that due to the stator at design rotor-stator-strut spacing, but it rapidly declines as the struts are moved downstream.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 86-1870
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A newly developed, 3-mm-diam, dual hot-wire aspirating probe was used to measure the time-resolved stagnation temperature and pressure in a transonic cryogenic wind tunnel. The probe consists of two coplanar constant temperature hot wires at different overheat ratios operating in a 1.5-mm-diam channel with a choked exit. Thus, the constant Mach number flow by the wires is influenced only by free-stream stagnation temperature and pressure. Diffusion of the free-stream Mach number to a lower value in the channel reduces the dynamic drag on the hot-wire. Frequency response of the present design is dc to 20 kHz. The probe was used to measure the unsteady wake shed from an oscillating airfoil tested in the 0.3-m Transonic Cryogenic Tunnel at NASA-Langley Research Center. The hot-wire lasted for more than ten hours before breaking, proving the ruggedness of the probe and the usefulness of the technique in a high dynamic pressure, transonic cryogenic wind tunnel. Typical data obtained from the experiment are presented after reduction to stagnation pressure and temperature.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA PAPER 86-0126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A study is conducted to analyze the performance of different turbulence models when applied to flow through a Mach 7.4 hypersonic inlet. The analysis, which is two-dimensional, is done by comparing computational results from a Parabolized Navier-Stokes code and a full Navier-Stokes code, with experimental data. The McDonald-Camarata (MC) and Baldwin-Lomax (BL) models were the two zero-equation models used in the study. The Turbulent Kinetic Energy (TKE) model was chosen as a representative higher order model. The MC model, when run with transition of flow, provides a solution which compares excellently with the data. Transition has a first order effect on the overall solution provided by the code. The BL model predicts separation of flow in the inlet, which contradicts experimental findings. The TKE model does not perform any better than the MC and BL models, despite the fact that it is a higher order turbulence model. The BL and TKE models predict transition in the inlet at a location which is much earlier than observed in the experiment. This may be attributed to the empirical constants used to determine the point of transition.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 88-2957
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A numerical study using an upwind finite volume technique to analyze high speed viscous flows is described. Two test cases were considered: a Mach 4.0 shock wave/laminar-boundary-layer interaction, and Mach 14.1 compression corners (15-deg and 24-deg ramp angle). PNS, TLNS, and NS equation results were obtained on each test case. As expected, PNS solutions are not adequate to resolve the flow physics. For the grids used in this study, there is no noticeable difference between the TLNS and full NS solutions. Both the TLNS and full NS solutions compared favorably with experimental data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 89-0001
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The performance of two constant-temperature normal hot-wire techniques in a supersonic flow is examined. The first technique uses a single-wire and rapid scanning of multiple overheat ratios. Time averages of the signals at all overheats are used to separate the mean and rms mass flux, stagnation temperature and their cross-correlation. The second technique uses a dual-wire probe with each wire operating at different overheat ratios, giving instantaneous mass flux and stagnation temperature. Preliminary results indicate that the separation distance (0.18 mm) between the two hot wires in the dual-wire probe does not introduce significant error. However, the rms mass flux inferred from the dual-wire technique is a factor of two higher than that from the single-wire technique.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA PAPER 88-0422
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...