ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Chimeric gene ; Nicotiana ; Streptomycin phosphotransferase ; Streptomycin resistance ; Transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plant cells in photoheterotrophic culture respond to streptomycin by bleaching and retarded growth but no cell death. A new genetic marker for plant cell transformation has been developed that is based on the expression of the enzyme streptomycin phosphotransferase (SPT), and confers the ability to form green colonies on a selective medium. Coding sequences of SPT from the bacterial transposon Tn5 were placed under the control of gene expression signals derived from the Agrobacterium Ti plasmid Ach5. The 5′ end of the SPT gene has been replaced with the promoter region of the gene coding for the first enzyme of agropine biosynthesis, the 3′ end with that of the enzyme octopine synthase. The chimeric SPT gene has been linked to a selectable kanamycin resistance gene, and introduced into Nicotiana tabacum and Nicotiana plumbaginifolia by selection for the linked kanamycin resistance marker. Streptomycin resistance was expressed in some but not all of the kanamycin-resistant lines and was transmitted to the seed progeny as a dominant nuclear trait.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Chimeric gene ; Mutant streptomycin phosphotransferase ; Non-lethal screen ; Streptomycin resistance ; Transgenic Nicotiana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Previous studies have shown that a chimeric streptomycin phosphotransferase (SPT) gene can function as a dominant marker for plant cell transformation. The SPT marker previously described by Jones and co-workers has a limited value since it conferred a useful level of resistance only to a fraction (10%) of Nicotiana plumbaginifolia transgenic lines. Expression of resistance was species specific: no such resistant transformants were found in N. tabacum. In this paper we describe an improved SPT construct that utilizes a mutant Tn5 SPT gene. The mutant gene, SPT *, encodes a protein with a two amino acid deletion close to its COOH-terminus. In N. tabacum cell culture the efficiency of transformation with the improved streptomycin resistance marker was comparable to kanamycin resistance. When the chimeric SPT * gene was introduced linked to a kanamycin resistance gene, streptomycin resistance was expressed in most of the transgenic N. tabacum lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...