ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (5)
Collection
Years
Year
  • 1
    Publication Date: 1987-10-01
    Print ISSN: 0143-1161
    Electronic ISSN: 1366-5901
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-01-01
    Description: Solar radiation incident on, and reflected by, the snow surface was measured near the South Pole as a function of wavelength, angle, and distance from the station. The objectives of the study were: (1) to observe spectral albedos of snow across the solar spectrum, (2) to obtain depth profiles of snow-grain radius in order to construct theoretical models of spectral albedo for pure snow, (3) to document the extent and degree of soot pollution due to station activities and to assess whether it could invalidate solar-radiation measurements made close to large stations, and (4) to obtain the spectral distribution of incident solar radiation at the Antarctic surface for various cloud conditions, in order to test radiation models of the Antarctic atmosphere. Spectral albedo, measured under diffuse lighting conditions (overcast cloud) on many days, repeatedly agreed with the results of theoretical models which predicted values approaching unity in the visible and found grain-size to be the most important variable controlling snow albedo in the near-infra-red. A representative albedo curve is shown in Figure 1.The visible albedo values were found to be 98–99% and were relatively insensitive to grain-size. (These results disagree with the only previous measurements of Antarctic snow albedo which had good spectral resolution: those of Kuhn and Siogas. Their maximum albedo was only about 90% in the visible.) The near-infra-red albedo, however, varied substantially among the experiments, due to day-to-day variations in snow grain-size, caused by precipitation and wind drifting. The experimental points in the figure match theoretical calculations for grain radius less than 50 μm at wavelengths beyond 1.5 μm, and 50–100 μm for shorter wavelengths. At the shorter wavelengths the light penetrates more deeply into the snow, so the albedo is sensitive to grains beneath the surface, whereas at the longer wavelengths the albedo is influenced only by the grains very close to the surface. The observed albedos can thus be explained by an increase in grain-size with depth. In order that our measurements would be representative of large areas, we were concerned to avoid possible effects of pollution from the station. We collected samples from the top 20 cm of snow, melted and filtered them, and analyzed the filters. The conclusion is that the pollution is very minor. Just 500 m up-wind of the station there is normally less than 1 ng of carbon per gram of snow (1 ppb). Even down-wind of the station the carbon content did not exceed 3 ppb. For snow grain-sizes typical of Antarctica, our models predict that 15 ppb carbon would reduce snow albedo by only 1% at the most sensitive wavelength. Thus we reject our earlier suggestion that the low visible albedos of Kuhn and Siogas were due to impurities in the snow and now favor other explanations.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-01-01
    Description: Narrow field-of-view sensors on satellites monitoring solar radiation measure the reflected radiance in a particular direction. For climatic studies of the Earth’s radiation budget, the albedo is needed, which is the integral of the upward radiance over all angles divided by the downward irradiance. In order to infer the albedo from a radiance measurement at only one angle, it is necessary to know a priori the distribution of reflected radiation with angle, i.e. the bi-directional reflectance-distribution function (BRDF). The BRDF is a function of four angles: solar zenith and azimuth, and satellite zenith and azimuth. For areal or temporal averages on many natural surfaces, only three angles are needed to describe the function, because only the difference between the two azimuths is important, not their individual values. This assumption was made when developing empirical BRDFs from Nimbus-satellite data for use in the Earth Radiation Budget Experiment (ERBE). However, in large areas of the polar regions, all four angles are needed, because the sastrugi are oriented parallel to a prevailing wind direction. The BRDF shows a forward peak when the solar beam is along the direction of the sastrugi, and an enhanced backward peak when it is perpendicular. Averaging over all solar azimuths (relative to the sastrugi azimuth) causes back-scattering to be averaged together with forward-scattering. The conclusion of the ERBE analysis, that snow is the most nearly isotropic of all Earth surfaces, is therefore at least partly a spurious result of this averaging. Measurements of the BRDF were carried out from a 23 m tower at the South Pole during January and February at 900 nm wavelength for varying azimuths between the Sun and the sastrugi fabric. The wavelength was selected near the midpoint of the solar-energy spectrum but where scattered sky radiation is negligible. Measurements were made with 10° field of view at 15° intervals in viewing zenith and azimuth angles throughout the day, at intervals of 1 h (15° of solar azimuth). For BRDF normalized such that its angular average is unity, the principal features of the results include a forward-scattering peak with a value of about five together with a side- and back-scattering lobe of 1.1 to 1.3. Variations in solar azimuth produced a skewness in BRDF which was approximately consistent with enhanced scattering at the specular angle with respect to the solar azimuth and the orientation of the principal fabric of the sastrugi pattern. The angularly averaged pattern was remarkably similar to the results of Taylor and Stowe even though their values were integrated over wavelength and were made through the atmosphere. Our studies thus suggest that, for mid- to late summer, the Taylor and Stowe results require only small corrections for sastrugi effects. This is not, however, expected to be true from sunrise through late November. Spectral albedos showed values at visible wavelengths of 0.97 to 0.99 which agree very well with the model calculations of Wiscombe and Warren using our observed mean snow grain-sizes. Albedos for wavelengths above 1400 nm were higher than model predictions, indicating that the depth dependence of grain-size must be included in the analysis. This research was supported by National Science Foundation grant DPP-83–16220.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-01-01
    Description: Narrow field-of-view sensors on satellites monitoring solar radiation measure the reflected radiance in a particular direction. For climatic studies of the Earth’s radiation budget, the albedo is needed, which is the integral of the upward radiance over all angles divided by the downward irradiance. In order to infer the albedo from a radiance measurement at only one angle, it is necessary to know a priori the distribution of reflected radiation with angle, i.e. the bi-directional reflectance-distribution function (BRDF). The BRDF is a function of four angles: solar zenith and azimuth, and satellite zenith and azimuth. For areal or temporal averages on many natural surfaces, only three angles are needed to describe the function, because only the difference between the two azimuths is important, not their individual values. This assumption was made when developing empirical BRDFs from Nimbus-satellite data for use in the Earth Radiation Budget Experiment (ERBE). However, in large areas of the polar regions, all four angles are needed, because the sastrugi are oriented parallel to a prevailing wind direction. The BRDF shows a forward peak when the solar beam is along the direction of the sastrugi, and an enhanced backward peak when it is perpendicular. Averaging over all solar azimuths (relative to the sastrugi azimuth) causes back-scattering to be averaged together with forward-scattering. The conclusion of the ERBE analysis, that snow is the most nearly isotropic of all Earth surfaces, is therefore at least partly a spurious result of this averaging.Measurements of the BRDF were carried out from a 23 m tower at the South Pole during January and February at 900 nm wavelength for varying azimuths between the Sun and the sastrugi fabric. The wavelength was selected near the midpoint of the solar-energy spectrum but where scattered sky radiation is negligible. Measurements were made with 10° field of view at 15° intervals in viewing zenith and azimuth angles throughout the day, at intervals of 1 h (15° of solar azimuth). For BRDF normalized such that its angular average is unity, the principal features of the results include a forward-scattering peak with a value of about five together with a side- and back-scattering lobe of 1.1 to 1.3. Variations in solar azimuth produced a skewness in BRDF which was approximately consistent with enhanced scattering at the specular angle with respect to the solar azimuth and the orientation of the principal fabric of the sastrugi pattern. The angularly averaged pattern was remarkably similar to the results of Taylor and Stowe even though their values were integrated over wavelength and were made through the atmosphere. Our studies thus suggest that, for mid- to late summer, the Taylor and Stowe results require only small corrections for sastrugi effects. This is not, however, expected to be true from sunrise through late November.Spectral albedos showed values at visible wavelengths of 0.97 to 0.99 which agree very well with the model calculations of Wiscombe and Warren using our observed mean snow grain-sizes. Albedos for wavelengths above 1400 nm were higher than model predictions, indicating that the depth dependence of grain-size must be included in the analysis.This research was supported by National Science Foundation grant DPP-83–16220.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-01-01
    Description: Solar radiation incident on, and reflected by, the snow surface was measured near the South Pole as a function of wavelength, angle, and distance from the station. The objectives of the study were: (1) to observe spectral albedos of snow across the solar spectrum, (2) to obtain depth profiles of snow-grain radius in order to construct theoretical models of spectral albedo for pure snow, (3) to document the extent and degree of soot pollution due to station activities and to assess whether it could invalidate solar-radiation measurements made close to large stations, and (4) to obtain the spectral distribution of incident solar radiation at the Antarctic surface for various cloud conditions, in order to test radiation models of the Antarctic atmosphere.Spectral albedo, measured under diffuse lighting conditions (overcast cloud) on many days, repeatedly agreed with the results of theoretical models which predicted values approaching unity in the visible and found grain-size to be the most important variable controlling snow albedo in the near-infra-red. A representative albedo curve is shown in Figure 1.The visible albedo values were found to be 98–99% and were relatively insensitive to grain-size. (These results disagree with the only previous measurements of Antarctic snow albedo which had good spectral resolution: those of Kuhn and Siogas. Their maximum albedo was only about 90% in the visible.) The near-infra-red albedo, however, varied substantially among the experiments, due to day-to-day variations in snow grain-size, caused by precipitation and wind drifting. The experimental points in the figure match theoretical calculations for grain radius less than 50 μm at wavelengths beyond 1.5 μm, and 50–100 μm for shorter wavelengths. At the shorter wavelengths the light penetrates more deeply into the snow, so the albedo is sensitive to grains beneath the surface, whereas at the longer wavelengths the albedo is influenced only by the grains very close to the surface. The observed albedos can thus be explained by an increase in grain-size with depth.In order that our measurements would be representative of large areas, we were concerned to avoid possible effects of pollution from the station. We collected samples from the top 20 cm of snow, melted and filtered them, and analyzed the filters. The conclusion is that the pollution is very minor. Just 500 m up-wind of the station there is normally less than 1 ng of carbon per gram of snow (1 ppb). Even down-wind of the station the carbon content did not exceed 3 ppb. For snow grain-sizes typical of Antarctica, our models predict that 15 ppb carbon would reduce snow albedo by only 1% at the most sensitive wavelength. Thus we reject our earlier suggestion that the low visible albedos of Kuhn and Siogas were due to impurities in the snow and now favor other explanations.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...