ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
Collection
Years
Year
  • 1
    Publication Date: 2013-08-31
    Description: It is well known that a large number of celestial objects exhibit, in the range 3 to 12 micron, a family of emission features called unidentified infrared bands (UIR). They usually appear together and are associated with UV sources. Recently various authors have suggested that these features could be attributed to solid carbonaceous materials. Following this interest, a systematic analysis was performed of various types of amorphous carbon grains and polycyclic aromatic hydrocarbons (PAH), produced in lab. Updating results of Raman measurements performed on several carbonaceous materials, chosen according to their astrophysical interest, are presented. The measurements were made by means of a Jobin-Yvon monochromator HG2S and standard DC electronic. The line at 5145 A of an Ar+ laser was used as excitation source.
    Keywords: SPACE RADIATION
    Type: NASA, Ames Research Center, Interstellar Dust: Contributed Papers; p 149-150
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The reliability of a theoretical model that solves the radiative transfer equation in dust clouds surrounding a central star is checked. In particular, it is found that both classical scattering by dust and the back-heating effects are negligible in the radiative transfer when envelopes similar to IRC+10216 are taken into consideration. In addition, new fits of IRC+10216 spectra are presented which were obtained, when the source is in different luminosity phases, under the assumption that amorphous carbon grains are in the circumstellar envelope. The same model is currently used to simulate the emission from carbon-rich sources showing the silicon carbide feature at 11.3 microns.
    Keywords: ASTRONOMY
    Type: NASA, Ames Research Center, Interstellar Dust: Contributed Papers; p 505-506
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Amorphous carbon grains similar to those produced in the laboratory, but with a higher hydrogen content, appear to be good candidates to simulate both the IR continuum emission and the 3.4 micron band measured for P/Halley. The comparison of the cometary features with those detected in the laboratory for carbon grains characterized by various sp(exp 2)/sp(exp 3) ratios seems to indicate that a prevalent diamond-like (sp(exp 3)) structure should be present in cometary particles. These kinds of solid particles seem also suitable to explain the daily and monthly variations of the 3.4 micron band intensity, relative to the continuum, and, at the same time,- to fulfill the abundance constraints. The same grains appear to be able to reproduce the absorption bands detected in the IR galactic source IRS 7. This result may be considered as a first experimental evidence of a relation existing between interstellar dust and cometary materials.
    Keywords: ASTROPHYSICS
    Type: NASA, Ames Research Center, Interstellar Dust: Contributed Papers; p 437-442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Among various candidate materials for interstellar dust, amorphous carbon (AC) is playing an increasingly important role (Greenstein, 1981; Hecht et al., 1984; Jura, 1983, 1986). Furthermore, recent in situ measurements have clearly shown the presence of carbonaceous grains in the coma of comet Halley (Kissel et al., 1986). Laboratory investigations on AC grains may be very useful to better interpret observations and to support theoretical elaborations. Recently, the authors started an international research program which also includes UV extinction analyses on AC samples, by using synchrotron light. Preliminary results obtained in a first shift of measurements, last June, are given. At the present stage of the data analysis, the authors can only draw some preliminary considerations. A wide band falling at around 240 nm is detected in all the analyzed samples. It intensity seems to decrease with increasing the dust collecting distance. A peak at 150 nm decreases in intensity with increasing the collecting distance. The band seems absent in the samples characterized by a larger amount of dust. A feature at about 200 nm is detected in some samples. At the moment the authors tend to attribute it to the transmission properties of the LiF substrates at the wavelength and/or to some problems in the experimental setup. It is unclear if a hump at 120 nm is real or due to instrumental effects. The profile of the spectra does not show substantial changes when the samples are cooled down to about 100 K. The present results appear to be in general agreement with previous findings, but their analysis is in progress and the interpretation is still on the way.
    Keywords: ASTRONOMY
    Type: NASA, Ames Research Center, Interstellar Dust: Contributed Papers; p 363-368
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...