ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: GC clusters ; Mobile elements ; Target sites ; mtDNA ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary GC clusters constitute the major repetitive elements in the mitochondrial (mt) genome of the yeast Saccharomyces cerevisiae. Many of these clusters are optional and thus contribute much to the polymorphism of yeast mtDNAs. We have made a systematic search for polymorphic sites by comparing mtDNA sequences of various yeast strains. Most of the 26 di- or polymorphic sites found differ by the presence or absence of a GC cluster of the majority class, here referred to as the M class, which terminate with an AGGAG motif. Comparison of sequences with and without the GC clusters reveal that elements of the subclasses M1 and M2 are inserted 3′ to a TAG, flanked by A+T rich sequences. M3 elements, in contrast, only occur in tandem arrays of two to four GC clusters; they are consistently inserted 3′ to the AGGAG terminal sequence of a preexisting cluster. The TAG or the terminal AGGAG, therefore, are regarded as being part of the target sites for M1 and M2 or M3 elements, respectively. The dinucleotide AG is in common to both target sites; it also occurs at the 3′ terminus (AGGAG). This suggests its duplication during GC cluster insertion. This notion is supported by the observation that GC clusters of the minor classes G and V similarily repeat at their 3′ terminus a GT or an AA dinucleotide, respectively, from their putative target sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Glucose repression ; Glucose derepression ; Regulatory genes ; Expression analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Yeast strains carrying one of the two regulatory mutations cat1 and cat3 are defectve in derepression of several glucose-repressible enzymes that are necessary for utilizing non-fermentable carbon sources. Hence, these strains fail to grow on ethanol, glycerol or acetate. The synthesis of isocitrate lyase, malate synthase, malate dehydrogenase and fructose-1,6-bisphosphatase is strongly affected in cat1 and cat3 strains. Genes CAT1 and CAT3 have been isolated by complementation of the cognate, mutations after transformation with an episomal plasmid gene library. The restriction map of CAT1 proved its allelism to the earlier isolated SNF1 gene. Both genes appear to exist as single-copy genes per haploid genome as indicated by Southern hybridization. Northern analysis has shown that the 1.35 kb CAT3 mRNA is constitutively expressed, independent of the carbon source in the medium. Derepression studies with CAT3 transformants using a multi-copy plasmid showed over-expression of glyoxylate cycle enzymes. This result would be consistent with a direct effector function for the CAT3 gene product.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...